
Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5P
(a)
To determine
The Flame hardening process relating to given points.
(b)
To determine
The Induction hardening process relating to given points.
(c)
To determine
The Laser beam hardening process relating to given points.
(d)
To determine
The carburizing process relating to given points.
(e)
To determine
The Nitriding process relating to given points.
(f)
To determine
The Ionitriding process relating to given points.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
2. Find the eigenvalues. Find the corresponding eigenvectors.
6
2
-21
[0 -3
1
3 31
a.
2 5
0
b.
3 0
-6
C.
1
1 0
-2 0
7
L6
6
0
1
1
2.
(Hint: λ =
= 3)
USE MATLAB ONLY
provide typed code
solve for velocity triangle and dont provide copied answer
Turbomachienery .
GIven:
vx = 185 m/s, flow angle = 60 degrees, (leaving a stator in axial flow) R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3
Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram
Use this code for plot
% plots Velocity Tri. in Ch4
function plotveltri(al1,al2,al3,b2,b3)
S1L = [0 1];
V1x = [0 0];
V1s = [0 1*tand(al3)];
S2L = [2 3];
V2x = [0 0];
V2s = [0 1*tand(al2)];
W2s = [0 1*tand(b2)];
U2x = [3 3];
U2y = [1*tand(b2) 1*tand(al2)];
S3L = [4 5];
V3x = [0 0];
V3r = [0 1*tand(al3)];
W3r = [0 1*tand(b3)];
U3x = [5 5];
U3y = [1*tand(b3) 1*tand(al3)];
plot(S1L,V1x,'k',S1L,V1s,'r',...
S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',...
S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',......
'LineWidth',2,'MarkerSize',10),...…
USE MATLAB ONLY
provide typed code
solve for velocity triangle and dont provide copied answer
Turbomachienery .
GIven:
vx = 185 m/s, flow angle = 60 degrees, R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3
Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram
Use this code for plot
% plots Velocity Tri. in Ch4
function plotveltri(al1,al2,al3,b2,b3)
S1L = [0 1];
V1x = [0 0];
V1s = [0 1*tand(al3)];
S2L = [2 3];
V2x = [0 0];
V2s = [0 1*tand(al2)];
W2s = [0 1*tand(b2)];
U2x = [3 3];
U2y = [1*tand(b2) 1*tand(al2)];
S3L = [4 5];
V3x = [0 0];
V3r = [0 1*tand(al3)];
W3r = [0 1*tand(b3)];
U3x = [5 5];
U3y = [1*tand(b3) 1*tand(al3)];
plot(S1L,V1x,'k',S1L,V1s,'r',...
S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',...
S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',......
'LineWidth',2,'MarkerSize',10),...
axis([-1 6 -4 4]), ...…
Chapter 5 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 5 - What is heat treatment?Ch. 5 - What types of properties can be altered through...Ch. 5 - Why should people performing hot forming or...Ch. 5 - What is the broad goal of the processing heat...Ch. 5 - Why might equilibrium phase diagrams be useful...Ch. 5 - What are the A1, A3, and Acm lines?Ch. 5 - What are some possible objectives of annealing...Ch. 5 - Why might it be important to include a preceding...Ch. 5 - Describe the cooling conditions of a full anneal.Ch. 5 - Why are the hypereutectoid steels not...
Ch. 5 - Although full anneals often produce the softest...Ch. 5 - What is the major process difference between full...Ch. 5 - Although normalizing is less expensive than a full...Ch. 5 - Prob. 14RQCh. 5 - What types of steel would be candidates for a...Ch. 5 - How might steel composition influence the...Ch. 5 - Other than increasing strength, for what three...Ch. 5 - What are the six major mechanisms that can be used...Ch. 5 - Prob. 19RQCh. 5 - What is required for a metal to be a candidate for...Ch. 5 - What are the three steps in an age�hardening...Ch. 5 - What is the difference between a coherent...Ch. 5 - What is overaging? Why does strength decrease?Ch. 5 - Describe the various aging responses (maximum...Ch. 5 - What is the difference between natural and...Ch. 5 - Why might naturally aging aluminum rivets be...Ch. 5 - Why is it important not to expose precipitation...Ch. 5 - Why is it more difficult to understand the...Ch. 5 - What types of heating and cooling conditions are...Ch. 5 - What are the stable equilibrium phases for steels...Ch. 5 - What are some nonequilibrium structures that...Ch. 5 - Prob. 32RQCh. 5 - What is the major factor that influences the...Ch. 5 - For a given steel, describe the relative strengths...Ch. 5 - Most structure changes proceed to completion over...Ch. 5 - What is retained austenite, and why is it an...Ch. 5 - What types of steels are more prone to retained...Ch. 5 - Why are martensitic structures usually tempered...Ch. 5 - Why does tempering offer a spectrum of possible...Ch. 5 - In what ways is the quench�and�temper heat...Ch. 5 - What is a C�C�T diagram? Why is it more useful...Ch. 5 - What is the critical cooling rate, and how is it...Ch. 5 - What two features combine to determine the...Ch. 5 - What conditions are used to standardize the quench...Ch. 5 - How do the various locations of a Jominy test...Ch. 5 - How do the data collected from a Jominy test...Ch. 5 - What is the assumption that allows the data from a...Ch. 5 - What is hardenability? How is it different from...Ch. 5 - What capabilities are provided by...Ch. 5 - When selecting a steel for an application, what...Ch. 5 - What are the three stages of liquid quenching?Ch. 5 - What are some of the major advantages and...Ch. 5 - Why does brine provide faster cooling than water?Ch. 5 - Why is an oil quench less likely to produce quench...Ch. 5 - What are some of the attractive qualities of a...Ch. 5 - Prob. 56RQCh. 5 - Prob. 57RQCh. 5 - Prob. 58RQCh. 5 - Prob. 59RQCh. 5 - How might the thermally induced residual stresses...Ch. 5 - Prob. 61RQCh. 5 - Prob. 62RQCh. 5 - Prob. 63RQCh. 5 - What is thermomechanical processing?Ch. 5 - Prob. 65RQCh. 5 - Prob. 66RQCh. 5 - Prob. 67RQCh. 5 - Prob. 68RQCh. 5 - Prob. 69RQCh. 5 - Prob. 70RQCh. 5 - Prob. 71RQCh. 5 - Prob. 72RQCh. 5 - Prob. 73RQCh. 5 - Why does a carburized part have to be further...Ch. 5 - Prob. 75RQCh. 5 - Prob. 76RQCh. 5 - Prob. 77RQCh. 5 - Describe the distinguishing features of a box...Ch. 5 - What are some possible functions of artificial...Ch. 5 - Prob. 80RQCh. 5 - Prob. 81RQCh. 5 - Prob. 82RQCh. 5 - What are some current goals of the heat treatment...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - Prob. 6PCh. 5 - What problems might be expected if the material on...Ch. 5 - Describe some heat treatment processes or...Ch. 5 - Prob. 1.3CSCh. 5 - Prob. 1.4CSCh. 5 - Prob. 1.5CSCh. 5 - Prob. 1.6CSCh. 5 - Prob. 1.7CSCh. 5 - Prob. 1.8CSCh. 5 - Prob. 2.1CSCh. 5 - Prob. 2.2CSCh. 5 - How would you alter the procedures or policies of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The answer should equal to 1157. Please sent me the solution. Thank you!arrow_forwardBONUS: If the volume of the 8cm x 6.5cm x 6cm Block of Aluminum was 312cm3 before machining, find how much material was removed when the fixture below was machined. +2 2.00 cm 6.00 cm 2.50 cm 6.50 cm 1.00 cm 2.50 cm 11.00 cm 8.00 cm 30 CP 9411 FL.4) (m² 1157 Area of triangle = 1/2*B*H Area of circle = лR² Circumference of a circle = 2πR 6.00 cm 6.50 cm 1.50 cm Radius 1.50 cm 1.00 cmarrow_forwardConsider a 5m by 5m wet concret patio with an average water film thickness of .2mm. Now wind at 50 km/h is blowing over the surface. If the air is at 1 atm, 15oC and 35 percent relative humidity, determine how long it will take for the patio to completely dry.arrow_forward
- 70. Compute the number of cubic centimeters of iron required for the cast-iron plate shown. The plate is 3.50 centimeters thick. Round the answer to the nearest cubic centimeter. 50.0 cm 40.0 cm Radius 150° 115.0 cm- 81.0 cmarrow_forwardLaw of Sines Solve the following problems using the Law of Sin 7. Find side x. All dimensions are in inches. -°-67°-37° 81° x Sin A 8.820 X 67°00' 32°00' a sin A b C sin B sin Carrow_forward35. a. Determine B. b. Determine side b. c. Determine side c. 5.330 in.- ZB 73°30'arrow_forward
- Consider a 12 cm internal diameter, 14 m long circular duct whose interior surface is wet. The duct is to be dried by forcing dry air at 1 atm and 15 degrees C throught it at an average velocity of 3m/s. The duct passes through a chilled roo, and it remains at an average temp of 15 degrees C at all time. Determine the mass transfer coeeficient in the duct.arrow_forwardnote n=number of link(dont include the ground link (fixed))arrow_forward6.(单选题) The DOF of the following mechanism is E A F=3x4-2x5-0=2 B F=3x3-2x4-0=1 F=3x3-2x3-2=1 D F=3x4-2x5-1=1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Materials Science Mechanical Engineering - Part 3 Corrosion Explained; Author: Mega Mechatronics;https://www.youtube.com/watch?v=Il-abRhrzFY;License: Standard Youtube License