
Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.39P
Calculate the capacitance-to-neutral in F/m and the admittance-to-neutral in S/km for the three-phase line in Problem 4.18. Also calculate the line-charging current in kA/phase if the line is 110 km in length and is operated at 230 kV. Neglect the effect of the earth plane.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
not use ai
not use ai
For the Fig.
name, derive and determine all gains, frequency and draw the output
waveform. Choose Q-15, and Q=6. Choose C₁-20 µF, C₂-5 µF, L=25mH.
R₂
12
HH
Chapter 4 Solutions
Power System Analysis and Design (MindTap Course List)
Ch. 4 - ACSR stands for Aluminum-clad steel conductor...Ch. 4 - Overhead transmission-line conductors are bare...Ch. 4 - Alumoweld is an aluminum-clad steel conductor....Ch. 4 - EHV lines often have more than one conductor per...Ch. 4 - Shield wires located above the phase conductors...Ch. 4 - Conductor spacings, types, and sizes do have an...Ch. 4 - A circle with diameter Din.=1000Dmil=dmil has an...Ch. 4 - An ac resistance is higher than a dc resistance....Ch. 4 - Prob. 4.9MCQCh. 4 - Transmission line conductance is usually neglected...
Ch. 4 - Prob. 4.11MCQCh. 4 - Prob. 4.12MCQCh. 4 - For a single-phase, two-wire line consisting of...Ch. 4 - For a three-phase three-wire line consisting of...Ch. 4 - For a balanced three-phase positive-sequence...Ch. 4 - A stranded conductor is an example of a composite...Ch. 4 - lnAk=lnAk True FalseCh. 4 - Prob. 4.18MCQCh. 4 - Expand 6k=13m=12Dkm.Ch. 4 - Prob. 4.20MCQCh. 4 - For a single-phase two-conductor line with...Ch. 4 - In a three-phase line, in order to avoid unequal...Ch. 4 - For a completely transposed three-phase line...Ch. 4 - Prob. 4.24MCQCh. 4 - Does bundling reduce the series reactance of the...Ch. 4 - Does r=e14r=0.788r, which comes in calculation of...Ch. 4 - In terms of line-to-line capacitance, the...Ch. 4 - For either single-phase two-wire line or balanced...Ch. 4 - Prob. 4.29MCQCh. 4 - Prob. 4.30MCQCh. 4 - Prob. 4.31MCQCh. 4 - Prob. 4.32MCQCh. 4 - Prob. 4.33MCQCh. 4 - Prob. 4.34MCQCh. 4 - The affect of the earth plane is to slightly...Ch. 4 - When the electric field strength at a conductor...Ch. 4 - Prob. 4.37MCQCh. 4 - Prob. 4.38MCQCh. 4 - Considering two parallel three-phase circuits that...Ch. 4 - The Aluminum Electrical Conductor Handbook lists a...Ch. 4 - The temperature dependence of resistance is also...Ch. 4 - A transmission-line cable with a length of 2 km...Ch. 4 - One thousand circular mils or 1 kcmil is sometimes...Ch. 4 - A 60-Hz, 765-kV, three-phase overhead transmission...Ch. 4 - A three-phase overhead transmission line is...Ch. 4 - If the per-phase line loss in a 70-km-long...Ch. 4 - A 60-Hz, single-phase two-wire overhead line has...Ch. 4 - Prob. 4.9PCh. 4 - A 60-Hz, three-phase three-wire overhead line has...Ch. 4 - Prob. 4.11PCh. 4 - Find the inductive reactance per mile of a...Ch. 4 - A single-phase overhead transmission line consists...Ch. 4 - Prob. 4.14PCh. 4 - Find the GMR of a stranded conductor consisting of...Ch. 4 - Prob. 4.16PCh. 4 - Determine the GMR of each of the unconventional...Ch. 4 - A 230-kV, 60-Hz, three-phase completely transposed...Ch. 4 - Prob. 4.19PCh. 4 - Calculate the inductive reactance in /km of a...Ch. 4 - Rework Problem 4.20 if the bundled line has (a)...Ch. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - For the overhead line of configuration shown in...Ch. 4 - Prob. 4.26PCh. 4 - Figure 4.34 shows double-circuit conductors'...Ch. 4 - For the case of double-circuit, bundle-conductor...Ch. 4 - Prob. 4.29PCh. 4 - Figure 4.37 shows the conductor configuration of a...Ch. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.38PCh. 4 - Calculate the capacitance-to-neutral in F/m and...Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Three ACSR Drake conductors are used for a...Ch. 4 - Consider the line of Problem 4.25. Calculate the...Ch. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - The capacitance of a single-circuit, three-phase...Ch. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Approximately how many physical transmission...Ch. 4 - Prob. BCSQCh. 4 - Prob. CCSQCh. 4 - Prob. DCSQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. (30pts) The input to a system is a DC component, a message, m(t), and a carrier, c(t). The output of the system is the square of the sum of the inputs. Determine if it is possible to retrieve DSB-SC modulated waveform. Show your work.arrow_forward2) (20pts) m(t) and an unmodulated carrier, c(t), are given below m(t) = 2.2 cos(2л400t) – 7 cos(2л700t) +5 cos(2500) volts c(t) = 6 cos(2л2000) volts Sketch the amplitude spectrum for a Double Sideband Suppressed Carrier modulated waveform. You must carefully label all axes and provide each frequency component value (the x-value); each amplitude in Volts/Hz (the y-value). Include both negative and positive frequencies.arrow_forwardnot use ai pleasearrow_forward
- For the circuit shown, find the voltage vo using superposition. Let Vs1-11, V2=27 V, 1-4, R₁-8 02, R2=5 Q2, R3-17 02, R4-2002 and R5-14 02. In particular show your values for: V01, Vo due to Is only: V01- V02, Vo due to V51 only: Voz V03, Vo due to V52 only: V03= Then Vo Vo VSI +1 RI ww ww V. IS V. V. V. R3 R5 ww www + Vo R2 www R4 V$2 The relative tolerance for this problem is 10 %.arrow_forwardFor the circuit shown, let V-28, I-5, R₁=50, R₂-802, R3-2002, R4-17 2 and R5-11 Q, determine the maximum power dissipated by the load resistor R₁ as follows: ■ Find VTH seen by the load resistor R₁, VTh= (V) (50%) ⚫ {Hint: You can use superposition or any other method. } Find RTH seen by the load resistor RL, RT= (Q) (25%) ■ maximum power dissipated by the load resistor R₁: (W) (25%) Is R5 R 1 ww w R3 Vs ± R2 w R4 w RL + Vo The relative tolerance for this problem is 10 %.arrow_forward3) (40 pts) An FM modulated carrier is modulated by the following signal: m(t) = 4 cos(2л * (1000) *t) volts The modulator uses a frequency deviation of 3 KHz. The unmodulated carrier is: * c(t) = 5 cos(2π (100,000) *t) volts a) (10pts) What would be a good estimate of the bandwidth of modulated signal?arrow_forward
- Only expert should attemptarrow_forwardFor the circuit shown, let Vs1-20, Vs2= 8 V, R₁=6 02, R₂-402, R3-8 Q, and R4-5 0, find the voltage Vx and Vo using superposition and voltage division as follows: [Note: You are given to 2 attempts.] 1. Determine Vx (choose the closet value): Vx = V. ○ 10.963 ○ 8.77 2.696 3.852 4.933 O 4.622 O 1.541 2. Use Vx to find Vo (choose the closet value): Vo V. 0.428 1.797 ○ 3.081 none of the listed values 1.284 0.285 ○ 2.568 = VS1 +1 ww R1 Vx R2 ww R3 ww R4 ww The relative tolerance for this problem is 10%. + Vo - +1 V$2arrow_forwardFor the circuit shown below, find the voltage V using superposition. Let V-28 V, I-4, R₁=5 Q, R₂-20 0, R3-15 Q and R4-10 Q2. In particular calculate: V due to V₂ only- V due to l₂ only- V due to Vs and I V S (+ 1) V. V R3 V R4 IS RI The relative tolerance for this problem is 10%. + R₂ warrow_forward
- please solve, thank youarrow_forwardFor the circuit shown, let V-24, I-5, R₁=17 Q, R₂=1102, R3-14, R4-5 0 and R5-20 then find the Thevenin equivalent circuits for the following 2 cases: 1. seen from terminal a-b: " RTH VTH 2. seen from terminal b-c: " RTH VTH = Vs +1 R2 www R4 R1 R5 R3 ww Is Carrow_forwardFundamentals of Energy Systems HW5 Q3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning

Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
How do Electric Transmission Lines Work?; Author: Practical Engineering;https://www.youtube.com/watch?v=qjY31x0m3d8;License: Standard Youtube License