Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.33P
To determine
(a)
Line to neutral capacitance per phase in F/km and admittance to neutral in S/km.
Compare the results to the case in which diameter is 1.5cm.
To determine
(b)
Line to neutral capacitance per phase in F/km and admittance to neutral in S/km.
Compare the results to the case in which diameter is 1.5cm.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
GMR calculate
Each conductor of a 3-0 overhead line is suspended from a cross arm of a steel tower by
a string of 4 suspension insulators. The voltage across the third 33 kV. The shunt
capacitance between each insulator and the earth is 1/8th of the capacitance of the
insulator itself. Find the voltage across string and string efficiency.
D-128
Lod Fa
A single core lead covered cable is to be designed for 68 kV(peak value) toearth. Its conductor diameter is 2 cm and its three insulating materials havepermittivities of 5, 4 and 3 respectively with the corresponding maximumsafe working stress of 38 kV/cm (r.m.s), 26 kV/cm (r.m.s) and 20 kV/cm(r.m.s) respectively. Find the minimum diameter of lead sheath.
Chapter 4 Solutions
Power System Analysis and Design (MindTap Course List)
Ch. 4 - ACSR stands for Aluminum-clad steel conductor...Ch. 4 - Overhead transmission-line conductors are bare...Ch. 4 - Alumoweld is an aluminum-clad steel conductor....Ch. 4 - EHV lines often have more than one conductor per...Ch. 4 - Shield wires located above the phase conductors...Ch. 4 - Conductor spacings, types, and sizes do have an...Ch. 4 - A circle with diameter Din.=1000Dmil=dmil has an...Ch. 4 - An ac resistance is higher than a dc resistance....Ch. 4 - Prob. 4.9MCQCh. 4 - Transmission line conductance is usually neglected...
Ch. 4 - Prob. 4.11MCQCh. 4 - Prob. 4.12MCQCh. 4 - For a single-phase, two-wire line consisting of...Ch. 4 - For a three-phase three-wire line consisting of...Ch. 4 - For a balanced three-phase positive-sequence...Ch. 4 - A stranded conductor is an example of a composite...Ch. 4 - lnAk=lnAk True FalseCh. 4 - Prob. 4.18MCQCh. 4 - Expand 6k=13m=12Dkm.Ch. 4 - Prob. 4.20MCQCh. 4 - For a single-phase two-conductor line with...Ch. 4 - In a three-phase line, in order to avoid unequal...Ch. 4 - For a completely transposed three-phase line...Ch. 4 - Prob. 4.24MCQCh. 4 - Does bundling reduce the series reactance of the...Ch. 4 - Does r=e14r=0.788r, which comes in calculation of...Ch. 4 - In terms of line-to-line capacitance, the...Ch. 4 - For either single-phase two-wire line or balanced...Ch. 4 - Prob. 4.29MCQCh. 4 - Prob. 4.30MCQCh. 4 - Prob. 4.31MCQCh. 4 - Prob. 4.32MCQCh. 4 - Prob. 4.33MCQCh. 4 - Prob. 4.34MCQCh. 4 - The affect of the earth plane is to slightly...Ch. 4 - When the electric field strength at a conductor...Ch. 4 - Prob. 4.37MCQCh. 4 - Prob. 4.38MCQCh. 4 - Considering two parallel three-phase circuits that...Ch. 4 - The Aluminum Electrical Conductor Handbook lists a...Ch. 4 - The temperature dependence of resistance is also...Ch. 4 - A transmission-line cable with a length of 2 km...Ch. 4 - One thousand circular mils or 1 kcmil is sometimes...Ch. 4 - A 60-Hz, 765-kV, three-phase overhead transmission...Ch. 4 - A three-phase overhead transmission line is...Ch. 4 - If the per-phase line loss in a 70-km-long...Ch. 4 - A 60-Hz, single-phase two-wire overhead line has...Ch. 4 - Prob. 4.9PCh. 4 - A 60-Hz, three-phase three-wire overhead line has...Ch. 4 - Prob. 4.11PCh. 4 - Find the inductive reactance per mile of a...Ch. 4 - A single-phase overhead transmission line consists...Ch. 4 - Prob. 4.14PCh. 4 - Find the GMR of a stranded conductor consisting of...Ch. 4 - Prob. 4.16PCh. 4 - Determine the GMR of each of the unconventional...Ch. 4 - A 230-kV, 60-Hz, three-phase completely transposed...Ch. 4 - Prob. 4.19PCh. 4 - Calculate the inductive reactance in /km of a...Ch. 4 - Rework Problem 4.20 if the bundled line has (a)...Ch. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - For the overhead line of configuration shown in...Ch. 4 - Prob. 4.26PCh. 4 - Figure 4.34 shows double-circuit conductors'...Ch. 4 - For the case of double-circuit, bundle-conductor...Ch. 4 - Prob. 4.29PCh. 4 - Figure 4.37 shows the conductor configuration of a...Ch. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.38PCh. 4 - Calculate the capacitance-to-neutral in F/m and...Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Three ACSR Drake conductors are used for a...Ch. 4 - Consider the line of Problem 4.25. Calculate the...Ch. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - The capacitance of a single-circuit, three-phase...Ch. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Approximately how many physical transmission...Ch. 4 - Prob. BCSQCh. 4 - Prob. CCSQCh. 4 - Prob. DCSQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 30 kV single core cable has a conductor dimeter of 2 cm and a sheath of inside diameter 6 cm. Find the maximum (peak value) and minimum stress (peak value) in the insulation.arrow_forward12. There are 6 conductors in a double circuit line. Each conductor has a radius of 12 mm. The 6conductors are arranged horizontally. The center to center distance between the conductor is 2m. The sequence of conductors are from left to right as follows: a,b.c,a', b', c'. Calculate the inductance per km per phase of system. the a' 2 m 2 m 2 m 2 m 2 marrow_forwardA three phase, 11 KV, underground cable system, consider a single core of conductor radius 0.5 cm diameter and lead sheath of 1.25 cm. The core and lead sheath have been separated by two intersheaths with radius 0.75 cm and 1 cm. Draw the cable core, dielectric and intersheath layers showing the thickness of each layer, then determine the voltages on the both intersheaths. Suppose the maximum stress on the layers are the same.arrow_forward
- The emf induced in a conductor when placed in magnetic field can be determined by the Lenz's law True Falsearrow_forwardConsider a 3-phase, 50 HZ, 11 KV distribution system. Each of conductors is suspended by an insulator string having two identical porcelain insulators. The self-capacitance of the insulator is 5 times the shunt capacitance between link and ground. Find the voltages across two insulators.arrow_forwardA double-circuit its capacitance to neutral per mile. line is shown below. The conductor radius is 0.0452 ft. Determine 16' 16' a b 22' c' b' a'arrow_forward
- Determine the mutual inductance between a very long straightwire and a conducting circular loop of radius “b” m set up “d” mapart on the same plane as shown figure.Problem:arrow_forwarddetails answerarrow_forwardA 33 kV single core cable has a conductor diameter of 1 cm and a sheath of inside diameter 4 cm. Find the maximum and minimum stress in the insulation.arrow_forward
- A three phase, 33 KV, underground cable system, consider a single core of conductor radius 0.8 cm diameter and lead sheath of 2.3 cm. The core and lead sheath have been separated by two intersheaths with radius 1.3 cm and 1.8 cm. Draw the cable core, dielectric and intersheath layers showing the thickness of each layer, then determine the voltages on the both intersheaths. Suppose the maximum stress on the layers are the same. Please i need it know pleasearrow_forwardI need the answer as soon as possiblearrow_forwardQ. 7arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage LearningDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
How do Electric Transmission Lines Work?; Author: Practical Engineering;https://www.youtube.com/watch?v=qjY31x0m3d8;License: Standard Youtube License