
Concept explainers
Figure 4.34 shows double-circuit conductors' relative positions in segment I of transposition of a completely transposed three-phase overhead transmission line. The inductance is given by
Where
With mean distances defined by equivalent spacings
And
Now consider a 345-kV, three-phase, double-circuit line with phase-conductor’s GMR of 0.0588 ft and the horizontal conductor configuration shown in Figure 4.35.
- Determine the inductance per meter per phase in Henries (H).
- Calculate the inductance of just one circuit and then divide by 2 to obtain the inductance of the double circuit.

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
Power System Analysis and Design (MindTap Course List)
- (input-side details omitted, not relevant) treel power Supply OMN outputarrow_forwardH.W.(1): Consider the unity feedback control system with forward transfer function as: Draw Nyquist plot G(s) ELEC 3.2 s(s+2.5)(s+4)arrow_forwardRes) kp (S+3) S+5 5+1 S-1 S(S+2)(5765+18) XXX 52+35+4 For the control system, Plot Nyquist Plot Cestarrow_forward
- V Res) ke(S+3) S+5 5+1 5(5+2)(5765+18) S-1 XX 5+35+4 For the control system, Plot Nyquist Plot, by MATLAB Cestarrow_forwardH.W.(2): Draw Nyquist plot ERIG Consider the unity feedback control system with forward transfer function as: قسم الهندسة الكهربائية ١٢ = 8 s(s + 2.2) G(S)arrow_forwardQ6 The FET shown in Fig. 1.43 has gm = 3.4mS and rd = 100 K2. Find the approximate lower cutoff frequency. Ans: 735.1 Hz. 1.5ΜΩ 0.02µF 25V is this circuts feedback or a voltage converter, and why is it required to be solve using approximate 21 want a detailed explanation of each 2ΚΩ 0.02µF HH Solution step you take. 20 ΚΩ 330 ΚΩ 820ΩΣ 1.0µF G 40kQarrow_forward
- when ever a flux linking a coil or current changes , an emf is induced in it this is known asarrow_forwardDraw a sample and hold electronic circuit using op-amp then explain its operation. Note: For the thousandth time, I will raise this question and send the solution using intelligence. Please draw the circle by a human and not using intelligence, otherwise I will not raise the question here. I also have artificial intelligence.arrow_forwardCan you solve for the voltage across 1kohm resistor when both voltage sources are on. Additionally can you solve for when 2V is shorted and 5V is on. Then, when 2V is on and 5V is shortedarrow_forward
- a. A silicon sample maintained at room temperature is uniformly doped with ND=10¹6/cm³ donors. Calculate the resistivity of the sample. b. The silicon sample of part (a) is "compensated" by adding NA=1016/cm³ acceptors. Calculate the resistivity of the compensated sample. c. Compute the resistivity of intrinsic silicon at room temperature. d. A 500 resistor is to be made from a bar-shaped piece of n-type Si. The bar has a cross sectional area of 102 cm² and a current-carrying length of 1 cm. Determine the doping required. μn or μp (cm²/V-sec) 1000 Electrons Holes NA or ND (cm³) 1x1014 Мет Mp (cm2V-sec) 1358 461 2 1357 460 100 5 1352 459 1 x 1015 1345 458 2 1332 455 5 1298 448 1 x 1016.... 1248 437 2 1165 419 5 986 378 1 x 1017 801 331 10 1014 1015 1016 NA or ND (cm-³) 1017 1018 Silicon T = 300 Karrow_forward4. Two different silicon samples maintained at 300K are characterized by the energy band diagrams. Answer the questions that follow after choosing a specific diagram for analysis. a) Do equilibrium conditions prebail? How do you know? b) Sketch the electrostatic potential (V) inside the semiconductor as a function of x. c) Sketch the electric field (ε) inside the semiconductor as a function of x. EF Ec E₁ Ev E₁ EF Ev X X 0 L/2 L 0 L/2 L 3.arrow_forwardSee BOTH images to answer correctly thxarrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
