Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.7P
If the per-phase line loss in a 70-km-long transmission line is not to exceed 65 kW while it is delivering 100 A per phase, compute the required conductor diameter if the resistivity of the conductor material is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Subject Power Transmission line and Distribution.
Three conductors of a 3-phase overhead line are arranged in a horizontal plane in the order a-b-c, distance between a and b is 6 m, b and c is spaced 6 m apart. The diameter of each line conductor is 1.5 cm. Calculate the Inductance per phase per km (L1) for this arrangement. Calculate Inductance per phase per km(L2) if the spacing between the conductors are reduced by half. Calculate the Ratio of L2 with respect to L1.
A 115 kv line has a horizontal configuration. The distance between adjacent conductors is 9ft. What is the geometric mean distance of the line?
Chapter 4 Solutions
Power System Analysis and Design (MindTap Course List)
Ch. 4 - ACSR stands for Aluminum-clad steel conductor...Ch. 4 - Overhead transmission-line conductors are bare...Ch. 4 - Alumoweld is an aluminum-clad steel conductor....Ch. 4 - EHV lines often have more than one conductor per...Ch. 4 - Shield wires located above the phase conductors...Ch. 4 - Conductor spacings, types, and sizes do have an...Ch. 4 - A circle with diameter Din.=1000Dmil=dmil has an...Ch. 4 - An ac resistance is higher than a dc resistance....Ch. 4 - Prob. 4.9MCQCh. 4 - Transmission line conductance is usually neglected...
Ch. 4 - Prob. 4.11MCQCh. 4 - Prob. 4.12MCQCh. 4 - For a single-phase, two-wire line consisting of...Ch. 4 - For a three-phase three-wire line consisting of...Ch. 4 - For a balanced three-phase positive-sequence...Ch. 4 - A stranded conductor is an example of a composite...Ch. 4 - lnAk=lnAk True FalseCh. 4 - Prob. 4.18MCQCh. 4 - Expand 6k=13m=12Dkm.Ch. 4 - Prob. 4.20MCQCh. 4 - For a single-phase two-conductor line with...Ch. 4 - In a three-phase line, in order to avoid unequal...Ch. 4 - For a completely transposed three-phase line...Ch. 4 - Prob. 4.24MCQCh. 4 - Does bundling reduce the series reactance of the...Ch. 4 - Does r=e14r=0.788r, which comes in calculation of...Ch. 4 - In terms of line-to-line capacitance, the...Ch. 4 - For either single-phase two-wire line or balanced...Ch. 4 - Prob. 4.29MCQCh. 4 - Prob. 4.30MCQCh. 4 - Prob. 4.31MCQCh. 4 - Prob. 4.32MCQCh. 4 - Prob. 4.33MCQCh. 4 - Prob. 4.34MCQCh. 4 - The affect of the earth plane is to slightly...Ch. 4 - When the electric field strength at a conductor...Ch. 4 - Prob. 4.37MCQCh. 4 - Prob. 4.38MCQCh. 4 - Considering two parallel three-phase circuits that...Ch. 4 - The Aluminum Electrical Conductor Handbook lists a...Ch. 4 - The temperature dependence of resistance is also...Ch. 4 - A transmission-line cable with a length of 2 km...Ch. 4 - One thousand circular mils or 1 kcmil is sometimes...Ch. 4 - A 60-Hz, 765-kV, three-phase overhead transmission...Ch. 4 - A three-phase overhead transmission line is...Ch. 4 - If the per-phase line loss in a 70-km-long...Ch. 4 - A 60-Hz, single-phase two-wire overhead line has...Ch. 4 - Prob. 4.9PCh. 4 - A 60-Hz, three-phase three-wire overhead line has...Ch. 4 - Prob. 4.11PCh. 4 - Find the inductive reactance per mile of a...Ch. 4 - A single-phase overhead transmission line consists...Ch. 4 - Prob. 4.14PCh. 4 - Find the GMR of a stranded conductor consisting of...Ch. 4 - Prob. 4.16PCh. 4 - Determine the GMR of each of the unconventional...Ch. 4 - A 230-kV, 60-Hz, three-phase completely transposed...Ch. 4 - Prob. 4.19PCh. 4 - Calculate the inductive reactance in /km of a...Ch. 4 - Rework Problem 4.20 if the bundled line has (a)...Ch. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - For the overhead line of configuration shown in...Ch. 4 - Prob. 4.26PCh. 4 - Figure 4.34 shows double-circuit conductors'...Ch. 4 - For the case of double-circuit, bundle-conductor...Ch. 4 - Prob. 4.29PCh. 4 - Figure 4.37 shows the conductor configuration of a...Ch. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.38PCh. 4 - Calculate the capacitance-to-neutral in F/m and...Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Three ACSR Drake conductors are used for a...Ch. 4 - Consider the line of Problem 4.25. Calculate the...Ch. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - The capacitance of a single-circuit, three-phase...Ch. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Approximately how many physical transmission...Ch. 4 - Prob. BCSQCh. 4 - Prob. CCSQCh. 4 - Prob. DCSQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 60-Hz, single-phase two-wire overhead line has solid cylindrical copper conductors with a 1.5 cm diameter. The conductors are arranged in a horizontal configuration with 0.5 m spacing. Calculate in mH/km (a) the inductance of each conductor due to internal flux linkages only, (b) the inductance of each conductor due to both internal and external flux linkages, and (c) the total inductance of the line.arrow_forwardShield wires located above the phase conductors protect the phase conductors against lightning. True Falsearrow_forwardA single-phase overhead transmission line consists of two solid aluminum conductors having a radius of 3 cm with a spacing 3.5 m between centers. (a) Determine the total line inductance in mH/m. (b) Given the operating frequency to be 60 Hz, find the total inductive reactance of the line in /km and in/mi. (c) If the spacing is doubled to 7 m, how does the reactance change?arrow_forward
- A Three-phase transposed line is composed of one conductor per phase with flat horizontal spacing of D = 14 meters, as shown in the below figure. The conductors have a diameter of 2.6 cm and a GMR of 1.012 cm. Find the capacitance per phase per kilometer of the line. a C D D 2D Select one: O a 0.0088 microF/Km Ob. 0.0077 microF/Km Oc 1.455 microF/Km Od. None of thesearrow_forwardQ2: A single-phase transmission line consisting of two conductors, the radius of each conductor is 0.4 cm, the distance between the conductors is three and half meters and the height above ground is eight meter. The capacitance in µF/km without effect -1 of ground is إجابتك The capacitance in µF/km with effect of -2 ground isarrow_forwardQ1. Figure 1 shows the conductor configuration of a completely transposed three-phase overhead transmission line with bundled phase conductors. All conductors have a radius of 0.74 cm with a 30 cm bundle spacing. a) Determine the inductance per phase in mH/km b) Find the inductive line reactance per phase in 22/mi at 60 Hz. c) Determine the line to neutral capacitance per phase in µF/km A B -30 cm -30 cm 6 m 6m Figure 1: Conductor configuration. 30 cmarrow_forward
- A three-phase transposed line is composed of one ACSR Bobolink conductor per phase with a horizontal spacing of 11 meters as shown in the figure. phase with a horizontal spacing of 11 meters as shown in the figure. The conductors have a diameter of 3.625 cm and a RMG of 1.439 cm. Calculate the inductance and capacitance to the neutral of the line.arrow_forwardA single-phase transmission line consisting of two conductors, the radius of each conductor is 0.4 cm, the distance between the conductors is three and half meters and the height above ground is eight 1-The capacitance in uF/km without effect of ground is 2-The capacitance in pF/km with effect of ground isarrow_forward2m 2m 1.8m 1.7m e) The diagram above shows the spacing of a 66 kV, 50 Hz, 3-phase line which is mounted on wooden poles. The radius of each conductor is 25mm and Eo is 8.854x1012 F/m. Calculate: (i) Find the average capacitance between each phase and neutral. (ii) The associated capacitive reactance for: of line. Paper Ma2021arrow_forward
- Three conductors of a 3-phase overhead line are arranged in a horizontal plane in the order a-b-c, distance between a and b is 12 m, b and c is spaced 12 m apart. The diameter of each line conductor is 2.5 cm. Calculate the Capacitance per phase per km (C1) for this arrangement. Calculate Capacitance per phase per km(C2) if the spacing between the conductors are reduced by 1/4th of the given spacing.arrow_forwardThe three conductors of a three-phase line are arranged at the corners of a triangle of sides 7 m, 15 m, and 9 m. The diameter of each line conductor is 5 cm. Calculate(i) Inductance per phase per km in mH Inductance per phase per km in mHarrow_forwardplease help me all option solve step by step thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
How do Electric Transmission Lines Work?; Author: Practical Engineering;https://www.youtube.com/watch?v=qjY31x0m3d8;License: Standard Youtube License