Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.18MCQ
To determine
Whether the geometric mean radius is same as geometric mean distance or not.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Can a dot product ever be negative?
Yes
No
Use Gauss
elimination to
find the values
of x, y, and
x+y+z=9
2x + 5y + 7z = 52
2x+y-z = 0
By using Gauss-Siedal method,
the voltage of the bus 2 after
two iteration is
Your answer
By using Gauss-Siedal method
the voltage of the bus 3 after
two iteration is
Your answer
For a system consist from 3 buses and bus 1 is the slack bus. The data of the
system are:-
0.25
-0.2 -0.05
Ybus j -0.2 0.225
-0.025 p.u.
-0.05 -0.025 0.075
V₁=1+j0 p.u., P₂+jQ2-0.6+j0.25 p.u., P3+jQ=0.8+j0.5 p.u.
Chapter 4 Solutions
Power System Analysis and Design (MindTap Course List)
Ch. 4 - ACSR stands for Aluminum-clad steel conductor...Ch. 4 - Overhead transmission-line conductors are bare...Ch. 4 - Alumoweld is an aluminum-clad steel conductor....Ch. 4 - EHV lines often have more than one conductor per...Ch. 4 - Shield wires located above the phase conductors...Ch. 4 - Conductor spacings, types, and sizes do have an...Ch. 4 - A circle with diameter Din.=1000Dmil=dmil has an...Ch. 4 - An ac resistance is higher than a dc resistance....Ch. 4 - Prob. 4.9MCQCh. 4 - Transmission line conductance is usually neglected...
Ch. 4 - Prob. 4.11MCQCh. 4 - Prob. 4.12MCQCh. 4 - For a single-phase, two-wire line consisting of...Ch. 4 - For a three-phase three-wire line consisting of...Ch. 4 - For a balanced three-phase positive-sequence...Ch. 4 - A stranded conductor is an example of a composite...Ch. 4 - lnAk=lnAk True FalseCh. 4 - Prob. 4.18MCQCh. 4 - Expand 6k=13m=12Dkm.Ch. 4 - Prob. 4.20MCQCh. 4 - For a single-phase two-conductor line with...Ch. 4 - In a three-phase line, in order to avoid unequal...Ch. 4 - For a completely transposed three-phase line...Ch. 4 - Prob. 4.24MCQCh. 4 - Does bundling reduce the series reactance of the...Ch. 4 - Does r=e14r=0.788r, which comes in calculation of...Ch. 4 - In terms of line-to-line capacitance, the...Ch. 4 - For either single-phase two-wire line or balanced...Ch. 4 - Prob. 4.29MCQCh. 4 - Prob. 4.30MCQCh. 4 - Prob. 4.31MCQCh. 4 - Prob. 4.32MCQCh. 4 - Prob. 4.33MCQCh. 4 - Prob. 4.34MCQCh. 4 - The affect of the earth plane is to slightly...Ch. 4 - When the electric field strength at a conductor...Ch. 4 - Prob. 4.37MCQCh. 4 - Prob. 4.38MCQCh. 4 - Considering two parallel three-phase circuits that...Ch. 4 - The Aluminum Electrical Conductor Handbook lists a...Ch. 4 - The temperature dependence of resistance is also...Ch. 4 - A transmission-line cable with a length of 2 km...Ch. 4 - One thousand circular mils or 1 kcmil is sometimes...Ch. 4 - A 60-Hz, 765-kV, three-phase overhead transmission...Ch. 4 - A three-phase overhead transmission line is...Ch. 4 - If the per-phase line loss in a 70-km-long...Ch. 4 - A 60-Hz, single-phase two-wire overhead line has...Ch. 4 - Prob. 4.9PCh. 4 - A 60-Hz, three-phase three-wire overhead line has...Ch. 4 - Prob. 4.11PCh. 4 - Find the inductive reactance per mile of a...Ch. 4 - A single-phase overhead transmission line consists...Ch. 4 - Prob. 4.14PCh. 4 - Find the GMR of a stranded conductor consisting of...Ch. 4 - Prob. 4.16PCh. 4 - Determine the GMR of each of the unconventional...Ch. 4 - A 230-kV, 60-Hz, three-phase completely transposed...Ch. 4 - Prob. 4.19PCh. 4 - Calculate the inductive reactance in /km of a...Ch. 4 - Rework Problem 4.20 if the bundled line has (a)...Ch. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - For the overhead line of configuration shown in...Ch. 4 - Prob. 4.26PCh. 4 - Figure 4.34 shows double-circuit conductors'...Ch. 4 - For the case of double-circuit, bundle-conductor...Ch. 4 - Prob. 4.29PCh. 4 - Figure 4.37 shows the conductor configuration of a...Ch. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.38PCh. 4 - Calculate the capacitance-to-neutral in F/m and...Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Three ACSR Drake conductors are used for a...Ch. 4 - Consider the line of Problem 4.25. Calculate the...Ch. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - The capacitance of a single-circuit, three-phase...Ch. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Approximately how many physical transmission...Ch. 4 - Prob. BCSQCh. 4 - Prob. CCSQCh. 4 - Prob. DCSQ
Knowledge Booster
Similar questions
- A transmission line whose characteristic impedance is 500, find that the speed of the wave transmitted by this line is equal to the speed of light in a vacuum, find both the inductance per unit length and the amplitude per unit length of this line Need more detailed answer all parts with analysis sure give 3 likesarrow_forwardA single-phase transmission line consisting of two conductors, the radius of each conductor is 0.4 cm, the distance between the conductors is three and half meters and the height above ground is eight 1-The capacitance in uF/km without effect of ground is 2-The capacitance in pF/km with effect of ground isarrow_forward4/ Which parameter is neglected or ignored in Short Transmission Lines? A. SHUNT CAPACITANCE ONLY B. SERIES CONDUCTANCE AND SHUNT CAPACITANCE C. SHUNT CONDUCTANCE AND SHUNT CAPACITANCE D. SHUNT CONDUCTANCE ONLYarrow_forward
- Subject Is power transmission lines and Distrubtionarrow_forwardWhat do you understand by impedance matching? Also write the formula of characteristic impedance for a loss less line? A piece of parallel wire line has a nominal capacitance of 30 Farad/mm, and 9 Henry inductance per meter. Assume the radius of the conductor is 0.005 meter then find the distance between the two parallel wire lines in millimeter.arrow_forwardIn the power system network shown in Figurebelowbus 1 is a slack bus with V = 1.020° per unit and bus 2 is a load bus with S2 300 MW + 80 Mvar. The line impedance on a base of 100 MVA is Z = 0.01 + j0.02 per %3D unit. (a) Using Gauss-Seidel method, determine V. Use an initial estimate of = 1.0 + j0.0 and perform two iterations. i.e.Deternine(a)V2 and (b)V½? Z12 = 0.01+ j0.0 2 2 S2 300 MW+80 Mvar (a) 0.954 - j0.052 (b) 0.949 - j0.0517 (a) 0.914 - j0.0152 (b) 0.949 - j0.0517 (a) 0.945 - j0.025 (b) 0.994- j0.0571 (a) 0.965 - j0.0255 (b) 0.914 - j0.0529arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning