Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.31MCQ
To determine
Whether the given statement is true or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Need a aol
Need correct and step by step handwritten solution.
DO NOT USE CHATGPT or other AI tool otherwise downvote and report
Q1: If the input x[n] = [001111] is applied to a discrete-time LTI system of impulse response
h[n] = [321]. Using z-transform, find the output y[n] of the system.
Chapter 4 Solutions
Power System Analysis and Design (MindTap Course List)
Ch. 4 - ACSR stands for Aluminum-clad steel conductor...Ch. 4 - Overhead transmission-line conductors are bare...Ch. 4 - Alumoweld is an aluminum-clad steel conductor....Ch. 4 - EHV lines often have more than one conductor per...Ch. 4 - Shield wires located above the phase conductors...Ch. 4 - Conductor spacings, types, and sizes do have an...Ch. 4 - A circle with diameter Din.=1000Dmil=dmil has an...Ch. 4 - An ac resistance is higher than a dc resistance....Ch. 4 - Prob. 4.9MCQCh. 4 - Transmission line conductance is usually neglected...
Ch. 4 - Prob. 4.11MCQCh. 4 - Prob. 4.12MCQCh. 4 - For a single-phase, two-wire line consisting of...Ch. 4 - For a three-phase three-wire line consisting of...Ch. 4 - For a balanced three-phase positive-sequence...Ch. 4 - A stranded conductor is an example of a composite...Ch. 4 - lnAk=lnAk True FalseCh. 4 - Prob. 4.18MCQCh. 4 - Expand 6k=13m=12Dkm.Ch. 4 - Prob. 4.20MCQCh. 4 - For a single-phase two-conductor line with...Ch. 4 - In a three-phase line, in order to avoid unequal...Ch. 4 - For a completely transposed three-phase line...Ch. 4 - Prob. 4.24MCQCh. 4 - Does bundling reduce the series reactance of the...Ch. 4 - Does r=e14r=0.788r, which comes in calculation of...Ch. 4 - In terms of line-to-line capacitance, the...Ch. 4 - For either single-phase two-wire line or balanced...Ch. 4 - Prob. 4.29MCQCh. 4 - Prob. 4.30MCQCh. 4 - Prob. 4.31MCQCh. 4 - Prob. 4.32MCQCh. 4 - Prob. 4.33MCQCh. 4 - Prob. 4.34MCQCh. 4 - The affect of the earth plane is to slightly...Ch. 4 - When the electric field strength at a conductor...Ch. 4 - Prob. 4.37MCQCh. 4 - Prob. 4.38MCQCh. 4 - Considering two parallel three-phase circuits that...Ch. 4 - The Aluminum Electrical Conductor Handbook lists a...Ch. 4 - The temperature dependence of resistance is also...Ch. 4 - A transmission-line cable with a length of 2 km...Ch. 4 - One thousand circular mils or 1 kcmil is sometimes...Ch. 4 - A 60-Hz, 765-kV, three-phase overhead transmission...Ch. 4 - A three-phase overhead transmission line is...Ch. 4 - If the per-phase line loss in a 70-km-long...Ch. 4 - A 60-Hz, single-phase two-wire overhead line has...Ch. 4 - Prob. 4.9PCh. 4 - A 60-Hz, three-phase three-wire overhead line has...Ch. 4 - Prob. 4.11PCh. 4 - Find the inductive reactance per mile of a...Ch. 4 - A single-phase overhead transmission line consists...Ch. 4 - Prob. 4.14PCh. 4 - Find the GMR of a stranded conductor consisting of...Ch. 4 - Prob. 4.16PCh. 4 - Determine the GMR of each of the unconventional...Ch. 4 - A 230-kV, 60-Hz, three-phase completely transposed...Ch. 4 - Prob. 4.19PCh. 4 - Calculate the inductive reactance in /km of a...Ch. 4 - Rework Problem 4.20 if the bundled line has (a)...Ch. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - For the overhead line of configuration shown in...Ch. 4 - Prob. 4.26PCh. 4 - Figure 4.34 shows double-circuit conductors'...Ch. 4 - For the case of double-circuit, bundle-conductor...Ch. 4 - Prob. 4.29PCh. 4 - Figure 4.37 shows the conductor configuration of a...Ch. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.38PCh. 4 - Calculate the capacitance-to-neutral in F/m and...Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Three ACSR Drake conductors are used for a...Ch. 4 - Consider the line of Problem 4.25. Calculate the...Ch. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - The capacitance of a single-circuit, three-phase...Ch. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Approximately how many physical transmission...Ch. 4 - Prob. BCSQCh. 4 - Prob. CCSQCh. 4 - Prob. DCSQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q1: If the input x[n] = [001111] is applied to a discrete-time LTI system of impulse response h[n]= = [321]. Find the output y[n] of the system. a. Using analytical technique. b. Using linear convolution technique.arrow_forwardDon't use ai to answer I will report you answerarrow_forwardAn antenna circuit is connected to a 4/4 transmission line with a characteristic impedance 5052. The transmission line is terminated with an antenna having a load impedance Z=60+ j4012. The input voltage at the source is V, 100 V RMS Vy 1. Calculate the input impedance seen by the source at the antenna connection point. 2. Determine the current flowing into the antenna. 3. Verify the supplied power from the source. 4. Calculate the radiated power P 5. Find the power lost in the systemarrow_forward
- A resonant half wavelength dipole is made of copper (G= 5.7 ×10 S/m) wire. Determine the conduction-dielectric (radiation) efficiency e of the dipole antenna, if the operating frequency is = 100 MHz, the radi of the wire b is 3x102arrow_forward"Detail the solution to the question with an explanation of the integration." A diploe with a total loss resistance of 122, is connected to generator whose internal impedance is 50+j25, the peak voltage of generator is 2 V and the impedance of the dipole excluding the loss resistance is 73+j42.5. All antenna and generator are connected via 50-92 2/4 long lossless transmission line. (a) Draw the equivalent circuit (b) Determine the power supplied by the generator (c) Determine the power radiated by the antennaarrow_forwardFor an X-band (8.2-12.4) GHz rectangular horn antenna with aperture dimensions of 5.5cm and 7.4cm. find its maximum effective aperture (in cm2) when its gain (over isotropic) is 1- 14.8dB at 8.2 GHz 2-16.5dB at 10.3GHz 3- 18dB at 12.4GHzarrow_forward
- Find the directivity in dB and the effective aperture for the following normalized radiation intensity (take f=100 MHz): U(0,0)=0.342csc0 0≤0≤20 20 ≤0≤60 60 ≤0≤18arrow_forwardAn antenna with a radiation impedance of 75+j10 ohm, with 10 ohm loss resistance, is connected to a generator with open-circuit voltage of 12 v and an internal impedance of 20 ohms via a 2/4-long transmission line with characteristic impedance of 75 ohms. (a) Draw the equivalent circuit (b) Determine the power supplied by the generator. (c) Determine the power radiated by the antenna. (d) Determine the reflection coefficient at the antenna terminals.arrow_forwardcircuit analysis using superposition what is value of iarrow_forward
- Two X-band 8.2-12.4 GHz rectangular horns, with aperture dimensions of 5.5 cm and 7.4 cm and each with a directivity of 16.3 dB (over isotropic at 10 GHz), are used as transmitting and receiving antennas. Assuming that the input power is 200 mW, the VSWR of each is 1.1. The conduction-dielectric efficiency is 100%, and the antennas are polarization-matched, find the maximum received power when the horns are separated in air by 5 m.arrow_forwardThe normalized radiation intensity of an antenna is rotationally symmetric in 4, and it is represented by 1 0°≤8 <30° 0.5 30° ≤ 0 < 60° U = 0.1 60° ≤ 0 < 90° 90° ≤ 0 ≤ 180° a) Determine the directivity (above isotropic) of an antenna in dB? b) Determine the directivity (above an infinitesimal dipole) of an antenna in dB?arrow_forwardA resonant lossless 2/2 dipole antenna, having a directivity of 2.156 dB at frequency of 9 MHz, has input impedance 73 £2 and is connected to a lossless 73 2 transmission line. A wave, having the same polarization as the antenna, is incident upon the antenna with a power density of 5 W/m². Find the received power available at the end of the transmission line.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Inductors Explained - The basics how inductors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=KSylo01n5FY;License: Standard Youtube License