Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.31MCQ
To determine
Whether the given statement is true or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
GMR calculate
Please provide Handwritten answer
Question number 6
decent handwriting pls
both the parts!
Chapter 4 Solutions
Power System Analysis and Design (MindTap Course List)
Ch. 4 - ACSR stands for Aluminum-clad steel conductor...Ch. 4 - Overhead transmission-line conductors are bare...Ch. 4 - Alumoweld is an aluminum-clad steel conductor....Ch. 4 - EHV lines often have more than one conductor per...Ch. 4 - Shield wires located above the phase conductors...Ch. 4 - Conductor spacings, types, and sizes do have an...Ch. 4 - A circle with diameter Din.=1000Dmil=dmil has an...Ch. 4 - An ac resistance is higher than a dc resistance....Ch. 4 - Prob. 4.9MCQCh. 4 - Transmission line conductance is usually neglected...
Ch. 4 - Prob. 4.11MCQCh. 4 - Prob. 4.12MCQCh. 4 - For a single-phase, two-wire line consisting of...Ch. 4 - For a three-phase three-wire line consisting of...Ch. 4 - For a balanced three-phase positive-sequence...Ch. 4 - A stranded conductor is an example of a composite...Ch. 4 - lnAk=lnAk True FalseCh. 4 - Prob. 4.18MCQCh. 4 - Expand 6k=13m=12Dkm.Ch. 4 - Prob. 4.20MCQCh. 4 - For a single-phase two-conductor line with...Ch. 4 - In a three-phase line, in order to avoid unequal...Ch. 4 - For a completely transposed three-phase line...Ch. 4 - Prob. 4.24MCQCh. 4 - Does bundling reduce the series reactance of the...Ch. 4 - Does r=e14r=0.788r, which comes in calculation of...Ch. 4 - In terms of line-to-line capacitance, the...Ch. 4 - For either single-phase two-wire line or balanced...Ch. 4 - Prob. 4.29MCQCh. 4 - Prob. 4.30MCQCh. 4 - Prob. 4.31MCQCh. 4 - Prob. 4.32MCQCh. 4 - Prob. 4.33MCQCh. 4 - Prob. 4.34MCQCh. 4 - The affect of the earth plane is to slightly...Ch. 4 - When the electric field strength at a conductor...Ch. 4 - Prob. 4.37MCQCh. 4 - Prob. 4.38MCQCh. 4 - Considering two parallel three-phase circuits that...Ch. 4 - The Aluminum Electrical Conductor Handbook lists a...Ch. 4 - The temperature dependence of resistance is also...Ch. 4 - A transmission-line cable with a length of 2 km...Ch. 4 - One thousand circular mils or 1 kcmil is sometimes...Ch. 4 - A 60-Hz, 765-kV, three-phase overhead transmission...Ch. 4 - A three-phase overhead transmission line is...Ch. 4 - If the per-phase line loss in a 70-km-long...Ch. 4 - A 60-Hz, single-phase two-wire overhead line has...Ch. 4 - Prob. 4.9PCh. 4 - A 60-Hz, three-phase three-wire overhead line has...Ch. 4 - Prob. 4.11PCh. 4 - Find the inductive reactance per mile of a...Ch. 4 - A single-phase overhead transmission line consists...Ch. 4 - Prob. 4.14PCh. 4 - Find the GMR of a stranded conductor consisting of...Ch. 4 - Prob. 4.16PCh. 4 - Determine the GMR of each of the unconventional...Ch. 4 - A 230-kV, 60-Hz, three-phase completely transposed...Ch. 4 - Prob. 4.19PCh. 4 - Calculate the inductive reactance in /km of a...Ch. 4 - Rework Problem 4.20 if the bundled line has (a)...Ch. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - For the overhead line of configuration shown in...Ch. 4 - Prob. 4.26PCh. 4 - Figure 4.34 shows double-circuit conductors'...Ch. 4 - For the case of double-circuit, bundle-conductor...Ch. 4 - Prob. 4.29PCh. 4 - Figure 4.37 shows the conductor configuration of a...Ch. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.38PCh. 4 - Calculate the capacitance-to-neutral in F/m and...Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Three ACSR Drake conductors are used for a...Ch. 4 - Consider the line of Problem 4.25. Calculate the...Ch. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - The capacitance of a single-circuit, three-phase...Ch. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Approximately how many physical transmission...Ch. 4 - Prob. BCSQCh. 4 - Prob. CCSQCh. 4 - Prob. DCSQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Does r=e14r=0.788r, which comes in calculation of inductance, play a role in capacitance computations? Yes Noarrow_forwardEach line of a 3-phase system given in figure is suspended by a string of 5 identical disks and the ratio of C1/C=0.1 (Shunt capacitance per self-capacitance) is given. If the string is connected to line of voltage 33kV. a) What is the voltage distribution over the unit of string and what is the string efficiency? b) When the string is supplied by a Guard Ring and this lead to add a two air capacitance of value 0.2C, 0.1C respectively to the nearest to the conductor. Find the new voltage distribution and the new efficiency.arrow_forwardQUESTION 2.3 Find the capacitance to neutral for the signal-circuit, three-phase, 345-kV line with conductors having an outside diameter of 1.075 in. with phase configuration forming an "H” system (i.e., a horizontal phase configuration). The adjacent phase separation of the conductors is 20.0 ft. A 20.0 ft B Figure 2. 20.0 ft Carrow_forward
- Consider a 3-phase, 50 HZ, 11 KV distribution system. Each of conductors is suspended by an insulator string having two identical porcelain insulators. The self-capacitance of the insulator is 5 times the shunt capacitance between link and ground. Find the voltages across two insulators.arrow_forwardSolve it fast plzarrow_forwardDerives and analyse relation of capacitance for 3-core cables ? proper explanation in detailsarrow_forward
- The three conductors of a 3-phase, 3-wire line are arranged at the corners of a triangle, the sides of which are 1 m, 1.3 m and 2 m. Calculate the inductance and capacitance per km of the line, when the conductors are transposed. The conductors are 1.5 cm diameter. [B.T.E. A.P. Power Systems II, T & D, June 1994) (Ans. 1.0923 mH: 0.0107 µF]arrow_forwardQ1: a) Discuss the effect of earth on the capacitance of a line : b) Derive in expression for the capacitance to neutral per phase per Km of a single phase overhead transmission line, taking into account the effect of earth. c) Derive in expression for the capacitance to neutral per phase per Km of a 3- phase overhead transmission line when conductors are of equilateral spacing.arrow_forwardDiscuss why a. Complex power in an AC circuit is more than the DC resistance. b. Receiving end voltage of an unloaded long line may be more than sending end voltage. c. Inductance of the three phase of a transmission line are generally not equal. d. It is necessary to use the geometric means radius in the formula for the inductance calculation whereas the formula for the capacitance calculation uses the actual radius.arrow_forward
- Find the GMR of this conductor as r.( Need handwritten solution only please otherwise downvote)arrow_forwardShield wires located above the phase conductors protect the phase conductors against lightning. True Falsearrow_forwardConductor spacings, types, and sizes do have an impact on the series impedance and shunt admittance. True Falsearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Inductors Explained - The basics how inductors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=KSylo01n5FY;License: Standard Youtube License