Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.50P
To determine
The value of electric field strength at the surface conductor and at ground level directly under one conductor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4.18 A 230-kV, 60-Hz, three-phase completely transposed overhead line has
one ACSR 954 kcmil conductor per phase and flat horizontal phase spac-
ing, with 7 m between adjacent conductors. Determine the inductance in
H/m and the inductive reactance in Q/km.
Consider the 500 kV, three phase bundled conductor line as shown in the figure below. Find the
line to neutral capacitance.
0.5 m
30 mm
(0)
(O to Ine
15 m
15 m
Please answer both..
I will rate
Chapter 4 Solutions
Power System Analysis and Design (MindTap Course List)
Ch. 4 - ACSR stands for Aluminum-clad steel conductor...Ch. 4 - Overhead transmission-line conductors are bare...Ch. 4 - Alumoweld is an aluminum-clad steel conductor....Ch. 4 - EHV lines often have more than one conductor per...Ch. 4 - Shield wires located above the phase conductors...Ch. 4 - Conductor spacings, types, and sizes do have an...Ch. 4 - A circle with diameter Din.=1000Dmil=dmil has an...Ch. 4 - An ac resistance is higher than a dc resistance....Ch. 4 - Prob. 4.9MCQCh. 4 - Transmission line conductance is usually neglected...
Ch. 4 - Prob. 4.11MCQCh. 4 - Prob. 4.12MCQCh. 4 - For a single-phase, two-wire line consisting of...Ch. 4 - For a three-phase three-wire line consisting of...Ch. 4 - For a balanced three-phase positive-sequence...Ch. 4 - A stranded conductor is an example of a composite...Ch. 4 - lnAk=lnAk True FalseCh. 4 - Prob. 4.18MCQCh. 4 - Expand 6k=13m=12Dkm.Ch. 4 - Prob. 4.20MCQCh. 4 - For a single-phase two-conductor line with...Ch. 4 - In a three-phase line, in order to avoid unequal...Ch. 4 - For a completely transposed three-phase line...Ch. 4 - Prob. 4.24MCQCh. 4 - Does bundling reduce the series reactance of the...Ch. 4 - Does r=e14r=0.788r, which comes in calculation of...Ch. 4 - In terms of line-to-line capacitance, the...Ch. 4 - For either single-phase two-wire line or balanced...Ch. 4 - Prob. 4.29MCQCh. 4 - Prob. 4.30MCQCh. 4 - Prob. 4.31MCQCh. 4 - Prob. 4.32MCQCh. 4 - Prob. 4.33MCQCh. 4 - Prob. 4.34MCQCh. 4 - The affect of the earth plane is to slightly...Ch. 4 - When the electric field strength at a conductor...Ch. 4 - Prob. 4.37MCQCh. 4 - Prob. 4.38MCQCh. 4 - Considering two parallel three-phase circuits that...Ch. 4 - The Aluminum Electrical Conductor Handbook lists a...Ch. 4 - The temperature dependence of resistance is also...Ch. 4 - A transmission-line cable with a length of 2 km...Ch. 4 - One thousand circular mils or 1 kcmil is sometimes...Ch. 4 - A 60-Hz, 765-kV, three-phase overhead transmission...Ch. 4 - A three-phase overhead transmission line is...Ch. 4 - If the per-phase line loss in a 70-km-long...Ch. 4 - A 60-Hz, single-phase two-wire overhead line has...Ch. 4 - Prob. 4.9PCh. 4 - A 60-Hz, three-phase three-wire overhead line has...Ch. 4 - Prob. 4.11PCh. 4 - Find the inductive reactance per mile of a...Ch. 4 - A single-phase overhead transmission line consists...Ch. 4 - Prob. 4.14PCh. 4 - Find the GMR of a stranded conductor consisting of...Ch. 4 - Prob. 4.16PCh. 4 - Determine the GMR of each of the unconventional...Ch. 4 - A 230-kV, 60-Hz, three-phase completely transposed...Ch. 4 - Prob. 4.19PCh. 4 - Calculate the inductive reactance in /km of a...Ch. 4 - Rework Problem 4.20 if the bundled line has (a)...Ch. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - For the overhead line of configuration shown in...Ch. 4 - Prob. 4.26PCh. 4 - Figure 4.34 shows double-circuit conductors'...Ch. 4 - For the case of double-circuit, bundle-conductor...Ch. 4 - Prob. 4.29PCh. 4 - Figure 4.37 shows the conductor configuration of a...Ch. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.38PCh. 4 - Calculate the capacitance-to-neutral in F/m and...Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Three ACSR Drake conductors are used for a...Ch. 4 - Consider the line of Problem 4.25. Calculate the...Ch. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - The capacitance of a single-circuit, three-phase...Ch. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Approximately how many physical transmission...Ch. 4 - Prob. BCSQCh. 4 - Prob. CCSQCh. 4 - Prob. DCSQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Figure 4.34 shows double-circuit conductors' relative positions in segment I of transposition of a completely transposed three-phase overhead transmission line. The inductance is given by L=2107lnGMDGMRH/m/phase Where GMD=(DABeqDBCeqDACeq)1/3 With mean distances defined by equivalent spacings DABeq=(D12D12D12D12)1/4DBCeq=(D23D23D23D13)1/4DACeq=(D13D13D13)1/4 And GMR=[ (GMR)A(GMR)B(GMR)C ]1/3 with phase GMRs defined by (GMR)A=[ rD11 ]1/2;(GMR)B=[ rD22 ]1/2;(GMR)C=[ rD33 ]1/2 and r is the GMR of phase conductors. Now consider a 345-kV, three-phase, double-circuit line with phase-conductors GMR of 0.0588 ft and the horizontal conductor configuration shown in Figure 4.35. Determine the inductance per meter per phase in Henries (H). Calculate the inductance of just one circuit and then divide by 2 to obtain the inductance of the double circuit.arrow_forwardThe capacitance of a single-circuit, three-phase transposed line with the configuration shown in Figure 4.38, including ground effect, and with conductors not equilaterally spaced is given by C20lnDeqrlnHmH8 F/m line-to-neutral where Deq=D12D23D133=GMD r= conductors outside radiusHm=(H12H23H13)1/3HS=(H1H2H3)1/3 Now consider Figure 4.39 in which the configuration of a three-phase, single circuit, 345-kV line with conductors having an outside diameter of 1.065 in. is shown. Determine the capacitance to neutral in F/m, including the ground effect. Next, neglecting the effect of ground, see how the value changes.arrow_forwardFor the case of double-circuit, bundle-conductor lines, the same method indicated in Problem 4.27 applies with r' replaced by the bundles GMR in the calculation of the overall GMR. Now consider a double-circuit configuration shown in Figure 4.36 that belongs to a 500-kV, three-phase line with bundle conductors of three subconductors at 21 in. spacing. The GMR of each subconductor is given to be 0.0485 ft. Determine the inductive reactance of the line in ohms per mile per phase. You may use XL=0.2794logGMDGMR/mi/phasearrow_forward
- (a) A three phase transposed transmission tower comprises of three-bundled conductor and double-circuit configured in vertical position as shown in Figure 2. Each sub-conductor in each circuit and each phase is an ACSR type, size 477,000 cmil and stranding 26/7. Given the GMR of each sub-conductor is 0.8809 cm and diameter is 2.1793 cm, analyze: i. Inductance in mH/km ii. Capacitance in µF/km 0.75m 7.5m b' 4m 4m 45cm Figure 2arrow_forwardThe equivalent circuit of a single phase short transmission line is shown in Figure Q4 (b). Here, the total line resistance and inductance are shown as lumped instead of being distributed. i) Sketch the phasor diagram and assess with by labeling the details for the A.C. series circuit shown in Figure Q4 (b) for the lagging power factor at load point (Vn). ii) Summarize, the impact of voltage regulation and efficiency, if the line resistance and line increases are doubled Figure Q4(b). R XL Vs Vn Figure Q4(b) Loadarrow_forwardQuestion number 6 decent handwriting pls both the parts!arrow_forward
- Q4(b) The equivalent circuit of a single phase short transmission line is shown in Figure Q4(b). Here, the total line resistance and inductance are shown as lumped instead of being distributed. i) Sketch the phasor diagram and assess with by labeling the details for the A.C. series circuit shown in Figure Q4(b) for the lagging power factor at load point (Vn). ii) Summarize, what if the load change from low value to high value shown in Figure Q4(b). R XL el Vs Vn Figure Q4(b) Loadarrow_forwardPlease provide Handwritten answerarrow_forwardThere are conductor x (number of conductors = 3) and conductor y (number ofconductors = 2’) for a 50 Hz single phase two-conductor line as shown in Figure below. The linelength is 20 miles. a. Calculate GMRx, GMRy and GMD b. Calculate Lx, Ly and total L in H/m. c. Calculate XL in /m per circuit.arrow_forward
- Do hand written if possible..plzarrow_forwardQ2. Figure Q2 shows the single-line diagram. The scheduled loads at buses 2 and 3 are as marked on the diagram. Line impedances are marked in per unit on 100 MVA base and the line charging susceptances are neglected. a) Using Gauss-Seidel Method, determine the phasor values of the voltage at load bus 2 and 3 according to second iteration results. b) Find slack bus real and reactive power according to second iteration results. c) Determine line flows and line losses according to second iteration results. d) Construct a power flow according to second iteration results. Slack Bus = 1.04.20° 0.025+j0.045 0.015+j0.035 0.012+j0,03 3 |2 134.8 MW 251.9 MW 42.5 MVAR 108.6 MVARarrow_forwardThe figure shows a common spacing for a 345 kV line using ACSR Drake conductors in bundles of two conductors with a bundle spacing d = 18 in and distances as shown. Calculate: (a) the line-to-neutral capacitance per mile, (b) the line-to-neutral capacitive susceptance per mile, (c) the per phase inductance per mile, and (d) the per phase inductive reactance per mile. 18" 7' 18" 18" 24' 24'arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
How do Electric Transmission Lines Work?; Author: Practical Engineering;https://www.youtube.com/watch?v=qjY31x0m3d8;License: Standard Youtube License