Concept explainers
The rate at which the
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Human Physiology: From Cells to Systems (MindTap Course List)
- Describe the contribution of each of the following to establishing and maintaining membrane potential: (a) the Na+K+ pump, (b) passive movement of K+ across the membrane, (c) passive movement of Na+ across the membrane, and (d) the large intracellular anions.arrow_forwardConformational changes in channel proteins brought about by voltage changes are responsible for opening and closing Na+ and K+ gates during the generation of an action potential. (True or false?)arrow_forwardOne of the important uses of the Nernst equation is in describing the flow of ions across plasma membranes. Ions move under the influence of two forces: the concentration gradient (given in electrical units by the Nernst equation) and the electrical gradient (given by the membrane voltage). This is summarized by Ohms law: Ix=Gx(VmEx) which describes the movement of ion x across the membrane. I is the current in amperes (A); G is the conductance, a measure of the permeability of x, in Siemens (S), which is I/V;Vm is the membrane voltage; and Ex is the equilibrium potential of ion x. Not only does this equation tell how large the current is, but it also tells what direction the current is flowing. By convention, a negative value of the current represents either a positive ion entering the cell or a negative ion leaving the cell. The opposite is true of a positive value of the current. a. Using the following information, calculate the magnitude of Na [ Na+ ]0=145mM,[ Na+ ]i=15mM,Gna+=1nS,Vm=70mV b. Is Na+ entering or leaving the cell? c. Is Na+ moving with or against the concentration gradient? Is it moving with or against the electrical gradient?arrow_forward
- Hyperkalemia is a condition by which ECF potassium levels become too high (usually due to kidney failure). Consider the following questions about the consequence of hyperkalemia on membrane potential. How would hyperkalemia affect EK? Considering your answer to the previous question, how would hyperkalemia affect membrane potential?arrow_forwardChloride ions (Cl-) behave a bit differently to Na+ and K+ in that most cells don't have active Cl- transporters. As a result, the concentration gradient for Cl- is not 'set' like it is for Na+ and K+. There are, however, a limited number of Cl- leak channels in the cell membrane. As a result, Eci generally matches resting membrane potential - around - 70mV. Considering this, answer the following questions. If Cl- can cross the cell membrane, is not being actively transported, and membrane potential is -70mV, will there be a concentration gradient for Cl-?arrow_forwardWhat happens to the membrane potential when Na+/K+ pump is active?arrow_forward
- The resting potential is dependent upon the electrochemical gradient for potassium ions because: The permeability of the resting membrane to potassium is higher than for other ions Of the activity of the sodium/potassium ATPase pump Cells contain largely potassium The permeability to sodium ions is very small except during action potentialsarrow_forwardA drug specifically blocks the Na+/K+ ATPase pump. What effect might this have on the action potential? O It will shorten the duration of the action potential as there will not be as many ions available to cross the membrane. None, as action potentials rely on channels for Na+ and K+ to cross the membrane, not pumps. It will not have an immediate effect, but eventually action potentials will stop as the Na+ and K+ gradients are depleted. It will make action potentials more likely to occur as the pump normally makes the cell more negative, so without it the membrane will reach threshold more easily.arrow_forwardWhat role do the Na+/K+ pumps play in establishing the resting membrane potential?arrow_forward
- Calculate the driving force for Na+, K+, and Ca2+ current in a neuron under physiological conditions.arrow_forwardAt rest, a neuron has a lower concentration of sodium than the surrounding fluid. The neuron also has a higher concentration of potassium inside the cell. The sodium-potassium ion pump is used to maintain the neuron in the resting state. Which of the following statements is true? A. Remaining at rest requires the use of ATP. B. Remaining at rest requires an input of sodium. C. Remaining at rest requires the activation of cotransporters. D Remaining at rest requires decreased permeability of the membrane.arrow_forwardThe normal concentrations for intracellular and extracellular potassium in a neuron are [K+]in = 150 mM and [K+]out = 5 mM, respectively. Due to an electrolyte imbalance, a patient has the following intracellular and extracellular concentrations of potassium: [K+]in = 140 mM and [K+]out =2 mM. Using the Nernst equation (Chapter 4), calculate the equilibrium potential for potassium in the cells with normal K+ distributions and of the diseased patient. Refer back to Question #1. Will it be easier or more difficult to generate an action potential in the diseased neuron as compared to the normal neuron? Why?arrow_forward
- Human Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage Learning