Human Physiology: From Cells to Systems (MindTap Course List)
9th Edition
ISBN: 9781285866932
Author: Lauralee Sherwood
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.4, Problem 2CYU
Summary Introduction
To draw:
A graph of an EPSP and IPSP with the relative distance between each of these and threshold potential.
Introduction:
A presynaptic neuron typically frees only one neurotransmitter. Various neurotransmitters cause distinct changes in ion permeability when binding with their subsynaptic receptor channels. Depending on the resulting modifications in permeability, there are 2 kinds of synapse, namely, Excitatory synapses and Inhibitory synapses.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
List the characteristics of a local potential versus an action potentials. Describe where each happens and what type of gates are involved and what is achieved
In the figure to the left, name the 4 phases of the action potential (Note: you have to write in where phase 4 occurs). Describe what happens in each phase with a focus on Na+ and K+ flow through channels and the membrane potential.
Discuss the importance of threshold. How does this relate to the concept of APs being all or none?
Compare and contrast EPSPs and IPSPs. Include the following information:
Where each are produced
Ions involved
Direction and size of polarization (generally, not a specific value)
Neurotransmitters involved
Receptor types involved
Chapter 4 Solutions
Human Physiology: From Cells to Systems (MindTap Course List)
Ch. 4.1 - Name the two types of excitable tissue.Ch. 4.1 - Prob. 2CYUCh. 4.1 - State the factor responsible for triggering gate...Ch. 4.2 - Prob. 1CYUCh. 4.2 - Prob. 2CYUCh. 4.2 - Prob. 3CYUCh. 4.3 - Draw and label an action potential, indicating the...Ch. 4.3 - Prob. 2CYUCh. 4.3 - Prob. 3CYUCh. 4.3 - Prob. 4CYU
Ch. 4.4 - Explain why synapses operate only in the direction...Ch. 4.4 - Prob. 2CYUCh. 4.4 - Prob. 3CYUCh. 4.4 - Prob. 4CYUCh. 4.5 - Define target cell.Ch. 4.5 - Distinguish among the four types of extracellular...Ch. 4.5 - Outline the three general means by which binding...Ch. 4.5 - Prob. 4CYUCh. 4.6 - Distinguish between cytokines and eicosanoids.Ch. 4.6 - Discuss the roles of phospholipase A2,...Ch. 4.6 - Prob. 3CYUCh. 4.7 - Prob. 1CYUCh. 4.7 - Prob. 2CYUCh. 4.7 - Prob. 3CYUCh. 4.8 - Prob. 1CYUCh. 4.8 - Prob. 2CYUCh. 4 - Conformational changes in channel proteins brought...Ch. 4 - Prob. 2RECh. 4 - Prob. 3RECh. 4 - Prob. 4RECh. 4 - Second-messenger systems ultimately bring about...Ch. 4 - Each steroidogenic organ has all the enzymes...Ch. 4 - Prob. 7RECh. 4 - Prob. 8RECh. 4 - Prob. 9RECh. 4 - Prob. 10RECh. 4 - Prob. 11RECh. 4 - Prob. 12RECh. 4 - Prob. 13RECh. 4 - A common membrane-bound intermediary between the...Ch. 4 - Prob. 15RECh. 4 - Prob. 16RECh. 4 - Prob. 17RECh. 4 - Prob. 18RECh. 4 - Define the following terms: polarization,...Ch. 4 - Prob. 2UCCh. 4 - Prob. 3UCCh. 4 - Prob. 4UCCh. 4 - Compare the four kinds of gated channels in terms...Ch. 4 - Prob. 6UCCh. 4 - Prob. 7UCCh. 4 - Prob. 8UCCh. 4 - Prob. 9UCCh. 4 - Define signal transduction.Ch. 4 - Compare the tyrosine kinase and JAK/STAT pathways.Ch. 4 - Prob. 12UCCh. 4 - Prob. 13UCCh. 4 - Describe how arachidonic acid is converted into...Ch. 4 - Prob. 15UCCh. 4 - Prob. 16UCCh. 4 - Explain how the cascading effect of hormonal...Ch. 4 - Prob. 18UCCh. 4 - Answer the following questions regarding...Ch. 4 - Prob. 2SQECh. 4 - Prob. 3SQECh. 4 - Prob. 1ACRCh. 4 - The rate at which the Na+K+ pump operates is not...Ch. 4 - Which of the following would occur if a neuron...Ch. 4 - Prob. 3TAHLCh. 4 - Assume presynaptic excitatory neuron A terminates...Ch. 4 - Prob. 5TAHL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- Conformational changes in channel proteins brought about by voltage changes are responsible for opening and closing Na+ and K+ gates during the generation of an action potential. (True or false?)arrow_forwardDraw and label an action potential, indicating the ion movements responsible for the rising phase and the falling phase.arrow_forwardDefine an action potential.arrow_forward
- Assume presynaptic excitatory neuron A terminates on a postsynaptic cell near the axon hillock and presynaptic excitatory neuron B terminates on the same postsynaptic cell on a dendrite located on the side of the cell body opposite the axon hillock. Explain why rapid firing of presynaptic neuron A could bring the postsynaptic neuron to threshold through temporal summation, thus initiating an action potential, whereas firing of presynaptic neuron B at the same frequency and the same magnitude of EPSPs may not bring the postsynaptic neuron to threshold.arrow_forwardDraw details of the repolarization phase of an action potential from the following descriptions of the sequences of AfterHyperPolarization (AHP) and AfterDePolarization (ADP) sequences. Make the distinct phases clear and noticeable (5 % each) A complex AHP consisting of a first component AHP, an ADP, and a second component AHP before repolarization to resting membrane potential a first fast AHP component, followed by a slower AHP, followed by a fast ADP, and a second late AHP component before repolarization to restarrow_forwardShow a complete circuit diagram of the model of the neuron using the specific numerical values for each component: potassium ion concentration outside: 4.0 mmol/L potassium ion concentration inside: 77.5 mmol/Larrow_forward
- Consider the following three diagrams of a nerve cell membrane. They show resting potential, depolarization, and hyperpolarization. Figure out which one is which, then draw them in the order they occur in a cell that undergoes an action potential outside + Na* inside K* Na* Nat K Nat K Na potential: -80 mV outside + Na K* Na* inside Na+ K Nat Na* K+ potential: +30 mV outside Na Na Na Na* K+ inside K* Na* Kt potential: -70 mVarrow_forwardAt the peak of an action potential, would the relative permeability of Na be higher than K? Which ion would be the least permeable to the membrane during falling phase?arrow_forwardDescribe the events of an action potential in terms of ions and gates or channels beginning with the generation of a local potential through the re-establishment of resting membrane potential.arrow_forward
- Name the three phases of an action potential. Describe for each the underlying molecular basis and the ion involved. Why is the term voltage-gated channel applied to Na+ channels involved in the generation of an action potential?arrow_forwardWhat is a graded potential, and what four events cancause it? Define decremental conduction of gradedpotentialsarrow_forwardBased upon the changes in permeability seen in the trace below and your knowledge of ion distributions across a cell, predict how ion movements would change during an action potential. Drag and drop each phrase into the appropriate box on the action potential trace. Drag the appropriate labels to their respective targets. Note: not all labels will be used. ►View Available Hint(s) Sodium (Na+) ions move to the axon Sodium (Na) ions move out of the axon Less potassium (K) ions move out of the axon Potassium (K) ions move out of the axon Potassium (K¹) ions move into the axon Sodium (Na) ions stop moving in Membrane potential (mv) +30 +10 0 -10- -30 -50 -70 -90 A PNa 0 PNa 5 6 1 PK Threshold PK 2 Reset Helparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Human Biology (MindTap Course List)
Biology
ISBN:9781305112100
Author:Cecie Starr, Beverly McMillan
Publisher:Cengage Learning
Enzyme Kinetics; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=FXWZr3mscUo;License: Standard Youtube License