
Concept explainers
(a)
Interpretation:
The shape of the following ion should be predicted:
Concept Introduction:
The shape of molecule is determined by electron density around central atom as it is suggested by VSEPR theory.
According to VSEPR theory we can determine the shape of a molecule by following the given steps.
- First identify the number of bonded atoms to the central atom and count the number of lone pair of electrons on central atom. Add these.
- The sum obtained above gives us idea about the electronic geometry in a molecule. For example, if it is two then the electron geometry will be linear, if it is three the geometry will be trigonal planar, four the geometry will be tetrahedral, five the geometry will be trigonal bipyramidal, six the geometry will be octahedral.
- Now for molecular geometry we have to consider the number of lone pair of electrons.
- The molecular geometry depends upon the repulsion order between electron pairs which is
(b)
Interpretation:
The shape of the following ion should be predicted:
Concept Introduction:
The shape of molecule is determined by electron density around central atom as it is suggested by VSEPR theory.
According to VSEPR theory we can determine the shape of a molecule by following the given steps.
- First identify the number of bonded atoms to the central atom and count the number of lone pair of electrons on central atom. Add these.
- The sum obtained above gives us idea about the electronic geometry in a molecule. For example, if it is two then the electron geometry will be linear, if it is three the geometry will be trigonal planar, four the geometry will be tetrahedral, five the geometry will be trigonal bipyramidal, six the geometry will be octahedral.
- Now for molecular geometry we must consider the number of lone pair of electrons.
- The molecular geometry depends upon the repulsion order between electron pairs which is
(b)
Interpretation:
The shape of the following ion should be predicted:
Concept Introduction:
The shape of molecule is determined by electron density around central atom as it is suggested by VSEPR theory.
According to VSEPR theory we can determine the shape of a molecule by following the given steps.
- First identify the number of bonded atoms to the central atom and count the number of lone pair of electrons on central atom. Add these.
- The sum obtained above gives us idea about the electronic geometry in a molecule. For example, if it is two then the electron geometry will be linear, if it is three the geometry will be trigonal planar, four the geometry will be tetrahedral, five the geometry will be trigonal bipyramidal, six the geometry will be octahedral.
- Now for molecular geometry we must consider the number of lone pair of electrons.
- The molecular geometry depends upon the repulsion order between electron pairs which is

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
Introduction to General, Organic and Biochemistry
- Please help me answer this question. I don't understand how or where the different reagents will attach and it's mostly due to the wedge bond because I haven't seen a problem like this before. Please provide a detailed explanation and a drawing showing how it can happen and what the final product will look like.arrow_forwardWhich of the following compounds is the most acidic in the gas phase? Group of answer choices H2O SiH4 HBr H2Sarrow_forwardWhich of the following is the most acidic transition metal cation? Group of answer choices Fe3+ Sc3+ Mn4+ Zn2+arrow_forward
- Based on the thermodynamics of acetic acid dissociation discussed in Lecture 2-5, what can you conclude about the standard enthalpy change (ΔHo) of acid dissociation for HCl? Group of answer choices You cannot arrive at any of the other three conclusions It is a positive value It is more negative than −0.4 kJ/mol It equals −0.4 kJ/molarrow_forwardPLEASE HELP URGENT!arrow_forwardDraw the skeletal structure corresponding to the following IUPAC name: 7-isopropyl-3-methyldecanearrow_forward
- Which of the following oxyacids is the weakest? Group of answer choices H2SeO3 Si(OH)4 H2SO4 H3PO4arrow_forwardAdd conditions above and below the arrow that turn the reactant below into the product below in a single transformation. + More... If you need to write reagents above and below the arrow that have complex hydrocarbon groups in them, there is a set of standard abbreviations you can use. More... T H,N NC Datarrow_forwardIndicate the order of basicity of primary, secondary and tertiary amines.arrow_forward
- > Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. Cl Z- N O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic O aromatic ○ antiaromatic nonaromaticarrow_forwardPlease help me answer this question. I don't understand how or even if this can happen in a single transformation. Please provide a detailed explanation and a drawing showing how it can happen in a single transformation. Add the necessary reagents and reaction conditions above and below the arrow in this organic reaction. If the products can't be made from the reactant with a single transformation, check the box under the drawing area instead.arrow_forward2) Draw the correct chemical structure (using line-angle drawings / "line structures") from their given IUPAC name: a. (E)-1-chloro-3,4,5-trimethylhex-2-ene b. (Z)-4,5,7-trimethyloct-4-en-2-ol C. (2E,6Z)-4-methylocta-2,6-dienearrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
