Concept explainers
(a)
Interpretation:
The Lewis structure for cyclopropane having molecular formula C3 H6 is to be drawn.
Concept Introduction:
During the formation of a compound each atom tends to lose, gain or share enough electrons to achieve an electronic configuration having eight valence electrons. This rule is also known as octet rule. The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.
A Lewis structure is representation of distribution of electrons on each atom of the molecule. Some of the electrons are shared by atoms to form bonds and some exist as lone pair which do not take part in bonding.
(b)
Interpretation:
Using VSEPR Theory, the geometry of each central atom present in given structure of Cyclopropane is to be identified.
Concept Introduction:
Bond angles in the molecules can be predicted by using valence shell electron pair repulsion (VSEPR) model. According to this model, the valence electrons of an atom are involved in the formation of single, double or triple bond. The valence electrons can also be unshared and exist as lone pair on atoms. The combination forms a negatively charged region of electron density around a nucleus. Since, like charges do not attract, the region of electron density around a nucleus spread out so that each atom is as far away from each other at different angles.
(c)
Interpretation:
Using VSEPR theory, the various relative bond angles associated with each central atom of the Cyclopropane molecule is to be determined.
Concept Introduction:
Bond angles in the molecules can be predicted by using valence shell electron pair repulsion (VSEPR) model. According to this model, the valence electrons of an atom are involved in the formation of single, double or triple bond. The valence electrons can also be unshared and exist as lone pair on atoms. The combination forms a negatively charged region of electron density around a nucleus. Since, like charges do not attract, the region of electron density around a nucleus spread out so that each atom is as far away from each other at different angles.
(d)
Interpretation:
Observing the given the shape and size of the Cyclopropane ring, the bond angle for C−C−C is to be predicted.
Concept Introduction:
Bond angle of the molecules can be predicted by using valence shell electron pair repulsion (VSEPR) model.
(e)
Interpretation:
A proper explanation with reason is to be given, why cyclopropane is considerably less stable than other three-carbon compounds that do not contain a ring.
Concept Introduction:
Bond angle of the molecules can be predicted by using valence shell electron pair repulsion (VSEPR) model.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Introduction to General, Organic and Biochemistry
- Nonearrow_forwardDr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v Varrow_forwardExperiment: Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.arrow_forward
- Rel. Intensity Q 1. Which one of the following is true of the compound whose mass spectrum is shown here? Explain how you decided. 100 a) It contains chlorine. b) It contains bromine. c) It contains neither chlorine nor bromine. 80- 60- 40- 20- 0.0 0.0 TT 40 80 120 160 m/z 2. Using the Table of IR Absorptions how could you distinguish between these two compounds in the IR? What absorbance would one compound have that the other compound does not? HO CIarrow_forwardIllustrate reaction mechanisms of alkenes with water in the presence of H2SO4, detailing each step of the process. Please show steps of processing. Please do both, I will thumb up for sure #1 #3arrow_forwardDraw the following molecule: (Z)-1-chloro-1-butenearrow_forward
- Identify the molecule as having a(n) E, Z, cis, or trans configuration. CH3 H₁₂C ○ E ○ z ○ cis transarrow_forwardIdentify the molecule as having a(n) E, Z, cis, or trans configuration. H₂C- CH3 О Е ○ cis ○ transarrow_forwardThe decomposition of dinitrogen pentoxide according to the equation: 50°C 2 N2O5(g) 4 NO2(g) + O2(g) follows first-order kinetics with a rate constant of 0.0065 s-1. If the initial concentration of N2O5 is 0.275 M, determine: the final concentration of N2O5 after 180 seconds. ...arrow_forward
- Don't used hand raitingarrow_forwardCS2(g) →CS(g) + S(g) The rate law is Rate = k[CS2] where k = 1.6 × 10−6 s−¹. S What is the concentration of CS2 after 5 hours if the initial concentration is 0.25 M?arrow_forwardCS2(g) → CS(g) + S(g) The rate law is Rate = k [CS2] where k = 1.6 × 10-6 s−1. S Calculate the half-life.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning