
Concept explainers
(a)
Interpretation:
The shape of a molecule whose central atom is surrounded by two regions of electron density should be determined.
Concept Introduction:
The shape of molecule is determined by electron density around central atom as it is suggested by VSEPR theory.
According to VSEPR theory we can determine the shape of a molecule by following the given steps:
- First identify the number of bonded atoms to the central atom and count the number of lone pair of electrons on central atom. Add these.
- The sum obtained above gives us idea about the electronic geometry in a molecule. For example, if it is two then the electron geometry will be linear, if it is three the geometry will be trigonal planar, four the geometry will be tetrahedral, five the geometry will be trigonal bipyramidal, six the geometry will be octahedral.
- Now for molecular geometry we have to consider the number of lone pair of electrons.
- The molecular geometry depends upon the repulsion order between electron pairs which is Bond-bond < lone pair −bond pair < lone pair-lone pair.
(b)
Interpretation:
The shape of a molecule whose central atom is surrounded by three regions of electron density should be determined.
Concept Introduction:
The shape of molecule is determined by electron density around central atom as it is suggested by VSEPR theory.
According to VSEPR theory we can determine the shape of a molecule by following the given steps.
- First identify the number of bonded atoms to the central atom and count the number of lone pair of electrons on central atom. Add these.
- The sum obtained above gives us idea about the electronic geometry in a molecule. For example if it is two then the electron geometry will be linear, if it is three the geometry will be trigonal planar, four the geometry will be tetrahedral, five the geometry will be trigonal bipyramidal, six the geometry will be octahedral.
- Now for molecular geometry we have to consider the number of lone pair of electrons.
- The molecular geometry depends upon the repulsion order between electron pairs which is Bond-bond < lone pair −bond pair < lone pair-lone pair.
(b)
Interpretation:
The shape of a molecule whose central atom is surrounded by four regions of electron density should be determined.
Concept Introduction:
The shape of molecule is determined by electron density around central atom as it is suggested by VSEPR theory.
According to VSEPR theory we can determine the shape of a molecule by following the given steps.
- First identify the number of bonded atoms to the central atom and count the number of lone pair of electrons on central atom. Add these.
- The sum obtained above gives us idea about the electronic geometry in a molecule. For example if it is two then the electron geometry will be linear, if it is three the geometry will be trigonal planar, four the geometry will be tetrahedral, five the geometry will be trigonal bipyramidal, six the geometry will be octahedral.
- Now for molecular geometry we have to consider the number of lone pair of electrons.
- The molecular geometry depends upon the repulsion order between electron pairs which is Bond-bond < lone pair −bond pair < lone pair-lone pair.

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
Introduction to General, Organic and Biochemistry
- Part 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) Temporary cross-linked polymer Using: 4% polyvinyl alcohol+ methyl red + 4% sodium boratearrow_forwardcan you please answer both these questions and draw the neccesaryarrow_forwardcan you please give the answer for both these pictures. thankyouarrow_forward
- Part 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) | Bakelite like polymer Using: Resorcinol + NaOH + Formalinarrow_forwardQuestion 19 0/2 pts 3 Details You have a mixture of sodium chloride (NaCl) and potassium chloride (KCl) dissolved in water and want to separate out the Cl- ions by precipitating them out using silver ions (Ag+). The chemical equation for the net ionic reaction of NaCl and KCl with silver nitrate, AgNO3, is shown below. Ag+(aq) + Cl(aq) → AgCl(s) The total mass of the NaCl/KCl mixture is 1.299 g. Adding 50.42 mL of 0.381 M solution precipitates out all of the Cl-. What are the masses of NaCl and KCl in the mixture? Atomic masses: g: Mass of NaCl g: Mass of KCL Ag = 107.868 g mol- 1 Cl = 35.453 g mol- 1 K = 39.098 g mol- N = 14.007 g mol−1 Na = 22.99 g mol−1 0 = 15.999 g mol 1 Question Help: ✓ Message instructor Submit Questionarrow_forwardPart 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) Polyester fiber Using a) pthalic anhydride + anhydrous sodium acetate + ethylene glycol B)pthalic anhydride + anhydrous sodium acetate + glycerolarrow_forward
- Identify the missing starting materials/ reagents/ products in the following reactions. Show the stereochemistry clearly in the structures, if any. If there is a major product, draw the structures of the major product with stereochemistry clearly indicated where applicable. Show only the diastereomers (you do not have to draw the pairs of enantiomers). If you believe that multiple products are formed in approximately equal amounts (hence neither is the major product), draw the structures of the products, and show the detailed mechanism of these reactions to justify the formation of the multiple products. If you believe no product is formed, explain why briefly. (6 mark for each, except f and g, which are 10 mark each)arrow_forward3. What starting material would you use to synthesize 3-hydroxypentanoic acid using a NaBH4 reduction?arrow_forward1. Give stereochemical (Fischer projection) formulas for all (but no extras) the stereoisomers that could theoretically form during the reduction of a. the carbonyl group of 2-methyl-3--pentanone b. both carbonyl groups of 2,4-pentanedione (careful!) 2. Predict the products of the reduction of O=CCH2CH2CH2C=O with a. LiAlH4 b. NaBH4 CH3 OHarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
