Concept explainers
(a)
Interpretation:
To draw the Lewis structure of a molecule in which carbon atom is bonded by a double bond to an other carbon atom.
Concept Introduction:
A covalent bond is formed by sharing of same number of electrons between two atoms to complete their octet. Atoms taking part in covalent bond formation may share one, two or three electron pairs thus forming single, double and triple bond respectively.
Lewis structure of a molecule can be determined as-
- 1.Calculate the total number of valence electrons.(T.V.E. = a).
Sum up all the electrons of all atoms present in the molecule.
If the molecule is an anion, add the same number of electrons as the charge present on the ion.
If it is a cation, subtract the same number of electrons as the charge present on the ion.
2. Calculate the total number of electrons required for each atom to have a complete octet or doublet for hydrogen (b).
3. Therefore number of bonds formed =
4.Remaining electrons are called as lone pairs.
5.Assign formal charges to atoms.
(b)
Interpretation:
To draw the Lewis structure of a molecule in which carbon atom is bonded by a double bond to an oxygen atom.
Concept Introduction:
A covalent bond is formed by sharing of same number of electrons between two atoms to complete their octet. Atoms taking part in covalent bond formation may share one, two or three electron pairs thus forming single, double and triple bond respectively.
Lewis structure of a molecule can be determined as-
- 1. Calculate the total number of valence electrons.(T.V.E. = a).
Sum up all the electrons of all atoms present in the molecule.
If the molecule is an anion, add the same number of electrons as the charge present on the ion.
If it is a cation, subtract the same number of electrons as the charge present on the ion.
2. Calculate the total number of electrons required for each atom to have a complete octet or doublet for Hydrogen.(b).
3. Therefore number of bonds formed =
4. Remaining electrons are called as lone pairs.
5. Assign formal charges to atoms.
(c)
Interpretation:
To draw the Lewis structure for a molecule in which carbon atom is bonded by a double bond to a nitrogen atom.
Concept Introduction:
A covalent bond is formed by sharing of same number of electrons between two atoms to complete their octet. Atoms taking part in covalent bond formation may share one, two or three electron pairs thus forming single, double and triple bond respectively.
Lewis structure of a molecule can be determined as-
- 1. Calculate the total number of valence electrons.(T.V.E. = a).
Sum up all the electrons of all atoms present in the molecule.
If the molecule is an anion, add the same number of electrons as the charge present on the ion.
If it is a cation, subtract the same number of electrons as the charge present on the ion.
2. Calculate the total number of electrons required for each atom to have a complete octet or doublet for Hydrogen.(b).
3. Therefore number of bonds formed =
4. Remaining electrons are called as lone pairs.
5. Assign formal charges to atoms.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Introduction to General, Organic and Biochemistry
- Hi, I need help on my practice final, if you could explain how to solve it offer strategies and dumb it down that would be amazing. Detail helpsarrow_forwardBriefly explain the following paragraph: both the distortion of symmetry and the fact that the solid is diamagnetic indicate the existence of a Nb-Nb bond.arrow_forwardHi I need help on my practice final, If you could explain how to solve it, offer strategies, and dumb it down that would be amazing.arrow_forward
- -1 2 3 4 5 7 8 At a certain temperature this reaction follows first-order kinetics with a rate constant of 0.0635 s 2C1,0, (g) →2C1, (g)+50, (g) Suppose a vessel contains C1,0, at a concentration of 1.03 M. Calculate how long it takes for the concentration of C1,0, to decrease by 86.0%. You may assume no other reaction is important. Round your answer to 2 significant digits. e х th Earrow_forwardASAP....arrow_forwardNonearrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning