![Introduction to General, Organic and Biochemistry](https://www.bartleby.com/isbn_cover_images/9781285869759/9781285869759_largeCoverImage.gif)
(a)
Interpretation:
The total number of valence electrons in of
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.
![Check Mark](/static/check-mark.png)
Answer to Problem 3.61P
8.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in n are 5 and that in hydrogen is 1 thus.
Hence, total number valence electrons in
(b)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.
![Check Mark](/static/check-mark.png)
Answer to Problem 3.61P
18.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in C are 4 and that in hydrogen is 1 thus.
Hence, total number valence electrons in
(c)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.
![Check Mark](/static/check-mark.png)
Answer to Problem 3.61P
24.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in C are 4, in H is 1and in O are 6 thus.
Hence, total number valence electrons in
(d)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.
![Check Mark](/static/check-mark.png)
Answer to Problem 3.61P
20.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in C are 4, in H is 1and in O are 6 thus.
Hence, total number valence electrons in
(e)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.
![Check Mark](/static/check-mark.png)
Answer to Problem 3.61P
32.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in C are 4 and in Cl is 7 thus.
Hence, total number valence electrons in
(f)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.
![Check Mark](/static/check-mark.png)
Answer to Problem 3.61P
18.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in H is 1, in nitrogen is 5 and in O are 6 thus.
Hence, total number valence electrons in
(g)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.
![Check Mark](/static/check-mark.png)
Answer to Problem 3.61P
32.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in C is 4, in Cl is 7 and in F is also 7 thus.
Hence, total number valence electrons in
(h)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.
![Check Mark](/static/check-mark.png)
Answer to Problem 3.61P
12.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in O are 6, thus.
Hence, total number valence electrons in
Want to see more full solutions like this?
Chapter 3 Solutions
Introduction to General, Organic and Biochemistry
- 3. Consider the compounds below and determine if they are aromatic, antiaromatic, or non-aromatic. In case of aromatic or anti-aromatic, please indicate number of I electrons in the respective systems. (Hint: 1. Not all lone pair electrons were explicitly drawn and you should be able to tell that the bonding electrons and lone pair electrons should reside in which hybridized atomic orbital 2. You should consider ring strain- flexibility and steric repulsion that facilitates adoption of aromaticity or avoidance of anti- aromaticity) H H N N: NH2 N Aromaticity (Circle) Aromatic Aromatic Aromatic Aromatic Aromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic nonaromatic nonaromatic nonaromatic nonaromatic nonaromatic aromatic TT electrons Me H Me Aromaticity (Circle) Aromatic Aromatic Aromatic Aromatic Aromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic nonaromatic nonaromatic nonaromatic nonaromatic nonaromatic aromatic πT electrons H HH…arrow_forwardA chemistry graduate student is studying the rate of this reaction: 2 HI (g) →H2(g) +12(g) She fills a reaction vessel with HI and measures its concentration as the reaction proceeds: time (minutes) [IH] 0 0.800M 1.0 0.301 M 2.0 0.185 M 3.0 0.134M 4.0 0.105 M Use this data to answer the following questions. Write the rate law for this reaction. rate = 0 Calculate the value of the rate constant k. k = Round your answer to 2 significant digits. Also be sure your answer has the correct unit symbol.arrow_forwardNonearrow_forward
- in which spectral range of EMR, atomic and ionic lines of metal liesarrow_forwardQ2: Label the following molecules as chiral or achiral, and label each stereocenter as R or S. CI CH3 CH3 NH2 C CH3 CH3 Br CH3 X &p Bra 'CH 3 "CH3 X Br CH3 Me - N OMe O DuckDuckarrow_forward1. For the four structures provided, Please answer the following questions in the table below. a. Please draw π molecular orbital diagram (use the polygon-and-circle method if appropriate) and fill electrons in each molecular orbital b. Please indicate the number of π electrons c. Please indicate if each molecule provided is anti-aromatic, aromatic, or non- aromatic TT MO diagram Number of π e- Aromaticity Evaluation (X choose one) Non-aromatic Aromatic Anti-aromatic || ||| + IVarrow_forward
- 1.3 grams of pottasium iodide is placed in 100 mL of o.11 mol/L lead nitrate solution. At room temperature, lead iodide has a Ksp of 4.4x10^-9. How many moles of precipitate will form?arrow_forwardQ3: Circle the molecules that are optically active: ДДДДarrow_forward6. How many peaks would be observed for each of the circled protons in the compounds below? 8 pts CH3 CH3 ΤΙ A. H3C-C-C-CH3 I (₁₁ +1)= 7 H CI B. H3C-C-CI H (3+1)=4 H LIH)=2 C. (CH3CH2-C-OH H D. CH3arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285869759/9781285869759_smallCoverImage.gif)