Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.141QP
Scientists have found interstellar hydrogen atoms with quantum number n in the hundreds. Calculate the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Chemistry: Atoms First
Ch. 3.1 - Calculate the kinetic energy of a helium atom...Ch. 3.1 - Calculate the energy in joules of a 5.25-g object...Ch. 3.1 - Prob. 1PPBCh. 3.1 - Prob. 1PPCCh. 3.1 - Prob. 3.2WECh. 3.1 - How much greater is the electrostatic potential...Ch. 3.1 - What must the separation between charges of +2 and...Ch. 3.1 - Prob. 2PPCCh. 3.1 - Prob. 3.1.1SRCh. 3.1 - Prob. 3.1.2SR
Ch. 3.1 - Prob. 3.1.3SRCh. 3.2 - One type of laser used in the treatment of...Ch. 3.2 - What is the wavelength (in meters) of an...Ch. 3.2 - What is the frequency (in reciprocal seconds) of...Ch. 3.2 - Which of the following sets of waves best...Ch. 3.2 - Prob. 3.2.1SRCh. 3.2 - Prob. 3.2.2SRCh. 3.2 - Prob. 3.2.3SRCh. 3.2 - Prob. 3.2.4SRCh. 3.3 - Calculate the energy (in joules) of (a) a photon...Ch. 3.3 - Calculate the energy (in joules) of (a) a photon...Ch. 3.3 - (a) Calculate the wavelength (in nanometers) of...Ch. 3.3 - Prob. 3.3.1SRCh. 3.3 - Prob. 3.3.2SRCh. 3.3 - Prob. 3.3.3SRCh. 3.3 - Prob. 3.3.4SRCh. 3.3 - Prob. 3.3.5SRCh. 3.4 - Calculate the wavelength (in nanometers) of the...Ch. 3.4 - What is the wavelength (in nanometers) of a photon...Ch. 3.4 - What is the value of ni for an electron that emits...Ch. 3.4 - For each pair of transitions, determine which one...Ch. 3.4 - Prob. 3.4.1SRCh. 3.4 - Prob. 3.4.2SRCh. 3.4 - Prob. 3.4.3SRCh. 3.4 - Prob. 3.4.4SRCh. 3.5 - Calculate the de Broglie wavelength of the...Ch. 3.5 - Calculate the de Broglie wavelength (in...Ch. 3.5 - Use Equation 3.11 to calculate the momentum, p...Ch. 3.5 - Consider the impact of early electron diffraction...Ch. 3.5 - Prob. 3.5.1SRCh. 3.5 - Prob. 3.5.2SRCh. 3.5 - Prob. 3.5.3SRCh. 3.6 - An electron in a hydrogen atom is known to have a...Ch. 3.6 - Prob. 7PPACh. 3.6 - (a) Calculate the minimum uncertainty in the...Ch. 3.6 - Using Equation 3.13, we can calculate the minimum...Ch. 3.6 - Prob. 3.6.1SRCh. 3.6 - Prob. 3.6.2SRCh. 3.7 - What are the possible values for the magnetic...Ch. 3.7 - Prob. 8PPACh. 3.7 - Prob. 8PPBCh. 3.7 - Prob. 8PPCCh. 3.7 - Prob. 3.7.1SRCh. 3.7 - Prob. 3.7.2SRCh. 3.7 - Prob. 3.7.3SRCh. 3.7 - Prob. 3.7.4SRCh. 3.8 - Prob. 3.9WECh. 3.8 - Prob. 9PPACh. 3.8 - Prob. 9PPBCh. 3.8 - Prob. 9PPCCh. 3.8 - Prob. 3.8.1SRCh. 3.8 - Prob. 3.8.2SRCh. 3.8 - Prob. 3.8.3SRCh. 3.8 - Prob. 3.8.4SRCh. 3.9 - Write the electron configuration and give the...Ch. 3.9 - Prob. 10PPACh. 3.9 - Write the electron configuration and give the...Ch. 3.9 - Prob. 10PPCCh. 3.9 - Prob. 3.9.1SRCh. 3.9 - Prob. 3.9.2SRCh. 3.9 - Prob. 3.9.3SRCh. 3.10 - Without referring to Figure 3.26, write the...Ch. 3.10 - Prob. 11PPACh. 3.10 - Prob. 11PPBCh. 3.10 - Consider again the alternate universe and its...Ch. 3.10 - Prob. 3.10.1SRCh. 3.10 - Prob. 3.10.2SRCh. 3.10 - Prob. 3.10.3SRCh. 3.10 - Prob. 3.10.4SRCh. 3 - Define these terms: potential energy, kinetic...Ch. 3 - What are the units for energy commonly employed in...Ch. 3 - A truck initially traveling at 60 km/h is brought...Ch. 3 - Describe the interconversions of forms of energy...Ch. 3 - Prob. 3.5QPCh. 3 - Prob. 3.6QPCh. 3 - Prob. 3.7QPCh. 3 - Prob. 3.8QPCh. 3 - Prob. 3.9QPCh. 3 - (a) How much greater is the electrostatic energy...Ch. 3 - Prob. 3.11QPCh. 3 - Prob. 3.12QPCh. 3 - List the types of electromagnetic radiation,...Ch. 3 - Prob. 3.14QPCh. 3 - Prob. 3.15QPCh. 3 - Prob. 3.16QPCh. 3 - The SI unit of time is the second, which is...Ch. 3 - Prob. 3.18QPCh. 3 - Prob. 3.19QPCh. 3 - Four waves represent light in four different...Ch. 3 - Prob. 3.21QPCh. 3 - Prob. 3.22QPCh. 3 - Prob. 3.23QPCh. 3 - What is a photon? What role did Einsteins...Ch. 3 - A photon has a wavelength of 705 nm. Calculate the...Ch. 3 - The blue color of the sky results from the...Ch. 3 - A photon has a frequency of 6.5 109 Hz. (a)...Ch. 3 - Prob. 3.28QPCh. 3 - Prob. 3.29QPCh. 3 - Prob. 3.30QPCh. 3 - Prob. 3.31QPCh. 3 - A particular form of electromagnetic radiation has...Ch. 3 - Photosynthesis makes use of visible light to bring...Ch. 3 - The retina of a human eye can detect light when...Ch. 3 - Prob. 3.35QPCh. 3 - The binding energy of magnesium metal is 5.86 ...Ch. 3 - What is the kinetic energy of the ejected electron...Ch. 3 - A red light was shined onto a metal sample and the...Ch. 3 - A photoelectric experiment was performed by...Ch. 3 - Which of the following best explains why we see...Ch. 3 - One way to see the emission spectrum of hydrogen...Ch. 3 - How many lines would we see in the emission...Ch. 3 - For a hydrogen atom in which the electron has been...Ch. 3 - Prob. 3.40QPCh. 3 - Prob. 3.41QPCh. 3 - Briefly describe Bohrs theory of the hydrogen atom...Ch. 3 - Explain the meaning of the negative sign in...Ch. 3 - Consider the following energy levels of a...Ch. 3 - Prob. 3.45QPCh. 3 - Calculate the wavelength (in nanometers) of a...Ch. 3 - Calculate the frequency (hertz) and wavelength...Ch. 3 - What wavelength of light is needed to excite the...Ch. 3 - An electron in the hydrogen atom makes a...Ch. 3 - Explain why elements produce their own...Ch. 3 - Some copper-containing substances emit green light...Ch. 3 - Prob. 3.52QPCh. 3 - Prob. 3.53QPCh. 3 - Prob. 3.54QPCh. 3 - Why is Equation 3.11 meaningful only for...Ch. 3 - Prob. 3.56QPCh. 3 - Thermal neutrons are neutrons that move at speeds...Ch. 3 - Protons can be accelerated to speeds near that of...Ch. 3 - Prob. 3.59QPCh. 3 - Prob. 3.60QPCh. 3 - Prob. 3.61QPCh. 3 - Prob. 3.62QPCh. 3 - What are the inadequacies of Bohrs theory?Ch. 3 - What is the Heisenberg uncertainty principle? What...Ch. 3 - Prob. 3.65QPCh. 3 - Prob. 3.66QPCh. 3 - Prob. 3.67QPCh. 3 - The speed of a thermal neutron (see Problem 3.57)...Ch. 3 - Alveoli are tiny sacs of air in the lungs. Their...Ch. 3 - In the beginning of the twentieth century, some...Ch. 3 - Suppose that photons of blue light (430 nm) are...Ch. 3 - Prob. 3.72QPCh. 3 - Prob. 3.73QPCh. 3 - Which of the four quantum numbers (n, , m, ms)...Ch. 3 - Prob. 3.75QPCh. 3 - Prob. 3.76QPCh. 3 - Prob. 3.77QPCh. 3 - Prob. 3.78QPCh. 3 - Describe the shapes of s, p, and d orbitals. How...Ch. 3 - Prob. 3.80QPCh. 3 - Describe the characteristics of an s orbital, p...Ch. 3 - Why is a boundary surface diagram useful in...Ch. 3 - Prob. 3.83QPCh. 3 - Give the values of the four quantum numbers of an...Ch. 3 - Describe how a 1s orbital and a 2s orbital are...Ch. 3 - Prob. 3.86QPCh. 3 - Prob. 3.87QPCh. 3 - Make a chart of all allowable orbitals in the...Ch. 3 - Prob. 3.89QPCh. 3 - Prob. 3.90QPCh. 3 - A 3s orbital is illustrated here. Using this as a...Ch. 3 - Prob. 3.92QPCh. 3 - Prob. 3.93QPCh. 3 - State the Aufbau principle, and explain the role...Ch. 3 - Indicate the total number of (a) p electrons in N...Ch. 3 - Calculate the total number of electrons that can...Ch. 3 - Determine the total number of electrons that can...Ch. 3 - Determine the maximum number of electrons that can...Ch. 3 - Prob. 3.99QPCh. 3 - The electron configuration of an atom in the...Ch. 3 - List the following atoms in order of increasing...Ch. 3 - Determine the number of unpaired electrons in each...Ch. 3 - Determine the number of impaired electrons in each...Ch. 3 - Determine the number of unpaired electrons in each...Ch. 3 - Prob. 3.105QPCh. 3 - Portions of orbital diagrams representing the...Ch. 3 - Prob. 3.107QPCh. 3 - Prob. 3.108QPCh. 3 - Prob. 3.109QPCh. 3 - Define the following terms and give an example of...Ch. 3 - Explain why the ground-state electron...Ch. 3 - Write the election configuration of a xenon core.Ch. 3 - Comment on the correctness of the following...Ch. 3 - Prob. 3.114QPCh. 3 - Prob. 3.115QPCh. 3 - Write the ground-state electron configurations for...Ch. 3 - Write the ground-state electron configurations for...Ch. 3 - What is the symbol of the element with the...Ch. 3 - Prob. 3.119QPCh. 3 - Prob. 3.120QPCh. 3 - Discuss the current view of the correctness of the...Ch. 3 - Distinguish carefully between the following terms:...Ch. 3 - What is the maximum number of electrons in an atom...Ch. 3 - Prob. 3.124QPCh. 3 - Prob. 3.125QPCh. 3 - A baseball pitchers fastball has been clocked at...Ch. 3 - A ruby laser produces radiation of wavelength 633...Ch. 3 - Four atomic energy levels of an atom are shown...Ch. 3 - Prob. 3.129QPCh. 3 - Spectral lines of the Lyman and Balmer series do...Ch. 3 - Only a fraction of the electric energy supplied to...Ch. 3 - The figure here illustrates a series of...Ch. 3 - When one of heliums electrons is removed, the...Ch. 3 - The retina of a human eye can detect light when...Ch. 3 - An electron in an excited state in a hydrogen atom...Ch. 3 - Prob. 3.136QPCh. 3 - The election configurations described in this...Ch. 3 - Draw the shapes (boundary surfaces) of the...Ch. 3 - Prob. 3.139QPCh. 3 - Consider the graph here. (a) Calculate the binding...Ch. 3 - Scientists have found interstellar hydrogen atoms...Ch. 3 - Ionization energy is the minimum energy required...Ch. 3 - Prob. 3.143QPCh. 3 - Prob. 3.144QPCh. 3 - The cone cells of the human eye are sensitive to...Ch. 3 - (a) An electron in the ground state of the...Ch. 3 - Prob. 3.147QPCh. 3 - Prob. 3.148QPCh. 3 - When an election makes a transition between energy...Ch. 3 - Blackbody radiation is the term used to describe...Ch. 3 - Suppose that photons of red light (675 nm) are...Ch. 3 - In an election microscope, electrons are...Ch. 3 - According to Einsteins special theory of...Ch. 3 - The mathematical equation for studying the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A hydrogen atom in the ground stale absorbs a photon whose wavelength is 95.0 nm. The resulting excited atom then emits a photon of 1282 nm. What are the regions of the electromagnetic spectrum for the radiations involved in these transitions? What is the principal quantum number of the final state resulting from the emission from the excited atom?arrow_forwardIt requires 799 kJ of energy to break one mole of carbon-oxygen double bonds in carbon dioxide. What wavelength of light does this correspond to per bond? Is there any transition in the hydrogen atom that has at least this quantity of energy to one photon?arrow_forward6.17 The laser in most supermarket barcode scanners operates at a wavelength of 632.8 nm. What is the energy of a single photon emitted by such a laser? What is the energy of one mole of these photons?arrow_forward
- The figure below represents part of the emission spectrum for a one-electron ion in the gas phase. All the lines result from electronic transitions from excited states to the n 3 state. (See Exercise 174.) a. What electronic transitions correspond to lines A and B? b. If the wavelength of line B is 142.5 nm, calculate the wavelength of line A.arrow_forward6.96 When a helium atom absorbs light at 58.44 nm, an electron is promoted from the 1s orbital to a 2p orbital. Given that the ionization energy of (ground state) helium is 2372 kJ/ mol, find the longest wavelength of light that could eject an electron from the excited state helium atom.arrow_forwardThe root-mean-square speed of an oxygen molecule, O2, at 21C is 479 m/s. Calculate the de Broglie wavelength for an O2 molecule traveling at this speed. How does this wavelength compare with the approximate length of this molecule, which is about 242 pm? (For this comparison, state the wavelength as a percentage of the molecular length.)arrow_forward
- A baseball weighs 142 g. A professional pitcher throws a fast ball at a speed of 100 mph and a curve ball at 80 mph. What wavelengths are associated with the motions of the baseball? If the uncertainty in the position of the ball is 12 wavelength, which ball (fast ball or curve) has a more precisely known position? Can the uncertainty in the position of a curve ball be used to explain why batters frequently miss it?arrow_forward(a) Which color in the visible spectrum has the highest frequency? Which has the lowest frequency? (b) Is the wavelength of the radiation used in a microwave oven (2.45 GHz) longer or shorter than that from your favorite FM radio station (for example, 91.7 MHz)? (c) Are the wavelengths of x-rays longer or shorter than those of ultraviolet light? (d) Calculate the frequency of green light with a wavelength of 510. nm.arrow_forwardCesium was discovered in natural mineral waters in 1860 by R. W. Bunsen and G. R. Kirchhoff, using the spectroscope they invented in 1859. The name came from the Latin caesius ("sky blue") because of the prominent blue line observed for this element at 455.5 nm. Calculate the frequency and energy of a photon of this light.arrow_forward
- Warm objects emit electromagnetic radiation in the infrared region. Heat lamps employ this principle to generate infrared radiation. Water absorbs infrared radiation with wavelengths near 2.80 m. Suppose this radiation is absorbed by the water and converted to heat. A 1.00-L sample of water absorbs infrared radiation, and its temperature increases from 20.0C to 30.0C. How many photons of this radiation are used to heat the water?arrow_forward6.71 Several excited states of the neon atom are important in the operation of a helium-neon laser. In these excited states, one electron of the neon atom is promoted from the 2p level to a higher energy orbital. An excited neon atom with a 1s22s22p55s1 electron configuration can emit a photon with a wavelength of 3391 nm as it makes a transition to a lower energy state with a 1s22s22p54p1 electron configuration. Other transitions are also possible. If an excited neon atom with a 1s22s22p53p1 electron configuration makes a transition to a lower energy state with a 1s22s22p53p1 electron configuration, it emits a photon with a wavelength of 632.8 nm. Find the wavelength of the photon that would be emitted in a transition from the 1s22s22p54p1 electron configuration to the 1s22s22p53p1 electron configuration. (It should help if you start by drawing an energy-level diagram.)arrow_forwardThe energy of a photon is 2.70 1019 J. What is the wavelength of the corresponding light? What is the color of this light?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Quantum Mechanics - Part 1: Crash Course Physics #43; Author: CrashCourse;https://www.youtube.com/watch?v=7kb1VT0J3DE;License: Standard YouTube License, CC-BY