Checking the possibility for a fluorescent material (one that absorbs and then reemits light) to emit radiation in the ultraviolet region after absorbing visible light should be analyzed. Concept Introduction: The electrons are excited thermally when the light is used by an object. As a result, an emission spectrum comes. The emission spectrum of a substance is seen by energizing a sample of material with either thermal energy or some other form of energy (such as a high-voltage electrical discharge if the substance is a gas). A “red-hot” or “white-hot” iron bar freshly removed from a fire produces a characteristic glow. The glow is the visible portion of its emission spectrum. The heat given off by the same iron bar is another portion of its emission spectrum called the infrared region. A feature common to the emission spectrum of the sun and that of a heated solid is that both are continuous. Hence, all wavelengths of visible light are present in each spectrum.
Checking the possibility for a fluorescent material (one that absorbs and then reemits light) to emit radiation in the ultraviolet region after absorbing visible light should be analyzed. Concept Introduction: The electrons are excited thermally when the light is used by an object. As a result, an emission spectrum comes. The emission spectrum of a substance is seen by energizing a sample of material with either thermal energy or some other form of energy (such as a high-voltage electrical discharge if the substance is a gas). A “red-hot” or “white-hot” iron bar freshly removed from a fire produces a characteristic glow. The glow is the visible portion of its emission spectrum. The heat given off by the same iron bar is another portion of its emission spectrum called the infrared region. A feature common to the emission spectrum of the sun and that of a heated solid is that both are continuous. Hence, all wavelengths of visible light are present in each spectrum.
Solution Summary: The author analyzes the possibility for a fluorescent material to emit radiation in the ultraviolet region after absorbing visible light.
Checking the possibility for a fluorescent material (one that absorbs and then reemits light) to emit radiation in the ultraviolet region after absorbing visible light should be analyzed.
Concept Introduction:
The electrons are excited thermally when the light is used by an object. As a result, an emission spectrum comes. The emission spectrum of a substance is seen by energizing a sample of material with either thermal energy or some other form of energy (such as a high-voltage electrical discharge if the substance is a gas). A “red-hot” or “white-hot” iron bar freshly removed from a fire produces a characteristic glow. The glow is the visible portion of its emission spectrum. The heat given off by the same iron bar is another portion of its emission spectrum called the infrared region. A feature common to the emission spectrum of the sun and that of a heated solid is that both are continuous. Hence, all wavelengths of visible light are present in each spectrum.
A mixture of 0.568 M H₂O, 0.438 M Cl₂O, and 0.710 M HClO are enclosed in a vessel at 25 °C.
H₂O(g) + C₁₂O(g) = 2 HOCl(g)
K = 0.0900 at 25°C
с
Calculate the equilibrium concentrations of each gas at 25 °C.
[H₂O]=
[C₁₂O]=
[HOCI]=
M
Σ
M
What units (if any) does the response factor (K) have? Does the response factor (K) depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)?
Provide the structure, circle or draw, of the monomeric unit found in the biological polymeric
materials given below.
HO
OH
amylose
OH
OH
행
3
HO
cellulose
OH
OH
OH
Ho
HO
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.