Interpretation:
The explanation for not existence of 2d subshell should be given using the rules governing the allowed values of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Chemistry: Atoms First
- 6.32 What are the mathematical origins of quantum numbers?arrow_forwardWhat experimental evidence supports the quantum theory of light? Explain the wave-particle duality of all matter .. For what size particles must one consider both the wave and the particle properties?arrow_forward• identify an orbital (as 1s, 3p, etc.) from its quantum numbers, or vice versa.arrow_forward
- In 1885, Johann Balmer, a mathematician, derived the following relation for the wavelength of lines in the visible spectrum of hydrogen =364.5 n2( n2 4) where in nanometers and n is an integer that can be 3, 4, 5, . . . Show that this relation follows from the Bohr equation and the equation using the Rydberg constant. Note that in the Balmer series, the electron is returning to the n=2 level.arrow_forwardThe table below is partially completed for subshells A and B, where subshell B is the next subshell higher in energy compared to subshell A. For example, if subshell A is the 4s subshell, then subshell B would be the 3d subshell. Use this criteria and the information provided to complete the table.arrow_forward6.96 When a helium atom absorbs light at 58.44 nm, an electron is promoted from the 1s orbital to a 2p orbital. Given that the ionization energy of (ground state) helium is 2372 kJ/ mol, find the longest wavelength of light that could eject an electron from the excited state helium atom.arrow_forward
- Give the possible values of a. the principal quantum number, b. the angular momentum quantum number, c. the magnetic quantum number, and d. the spin quantum number.arrow_forwardConsider a one-dimensional particle-in-a-box and a three-dimensional particle-in-a-box that have the same dimensions. a What is the ratio of the energies of a particle having the lowest possible quantum numbers in both boxes? b Does this ratio stay the same if the quantum numbers are not the lowest possible values?arrow_forwardWhat type of electron orbital (i.e., s, p, d, or f) is designated by an electron with quantum numbers (a) n=1,l=0,m l =0(b) n=3,l=2,m l =1? (c) n=4,l=3,m l =3arrow_forward
- What are the allowed values for each of the four quantum numbers: n, l, ml, and ms?arrow_forwardWhy was Schrodinger not able to describe exactly the pathway an electron takes as it moves through the space of an atom?arrow_forwardAnswer the following questions: (a) Without using quantum numbers, describe the differences between the shells, subshells, and orbitals of an atom. (b) How do the quantum numbers of the shells, subshells, and orbitals of an atom differ?arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning