Concept explainers
(a)
Interpretation:
Whether the compound acyl CoA is associated with (1) the β-oxidation pathway, (2) ketogenesis, (3) both the β-oxidation pathway and ketogenesis has to be determined.
Concept introduction:
Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules.
The β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain cannot be broken down any further. The end products of this
(b)
Interpretation:
Whether the compound enoyl CoA is associated with (1) the β-oxidation pathway, (2) ketogenesis, (3) both the β-oxidation pathway and ketogenesis has to be determined.
Concept introduction:
Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.
The β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.
(c)
Interpretation:
Whether the compound acetyl CoA is associated with (1) the β-oxidation pathway, (2) ketogenesis, (3) both the β-oxidation pathway and ketogenesis has to be determined.
Concept introduction:
Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.
The β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.
(d)
Interpretation:
Whether the compound β-hydroxybutyrate is associated with (1) the β-oxidation pathway, (2) ketogenesis, (3) both the β-oxidation pathway and ketogenesis has to be determined.
Concept introduction:
Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.
The β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.
Want to see the full answer?
Check out a sample textbook solutionChapter 25 Solutions
Study Guide with Selected Solutions for Stoker's General, Organic, and Biological Chemistry, 7th
- Why does a deficiency of carbohydrates in the diet lead to ketone body formation?arrow_forwardOne of the steps that occur during the synthesis of ketone bodies is shown below. OH D-beta-hydroxybutyrate Dehydrógenase .coo coo0 H3C cooo Нас acetoacetate D-beta-hydroxybutyrate Does this process require FAD or NAD*, FADH2 or NADH as the reactant coenzyme? Explain your answer in a few words.arrow_forwardHow many molecules of NADH and FADH2 are obtained from the β-oxidation of one molecule of a 16-carbon saturated fatty acyl-CoA?arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning