Mass and center of mass Let S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes ( see Section 13.6 ) are M y z = ∬ S x ρ ( x , y , z ) d S , M x z = ∬ S y ρ ( x , y , z ) d S , and M x y = ∬ S z ρ ( x , y , z ) d S . The coordinates of the center of mass of the shell are x ¯ = M y z m , y ¯ = M x z m , z ¯ = M x y m , where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible . 66. The constant-density hemispherical shall x 2 + y 2 + z 2 = a 2 , z ≥ 0
Mass and center of mass Let S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes ( see Section 13.6 ) are M y z = ∬ S x ρ ( x , y , z ) d S , M x z = ∬ S y ρ ( x , y , z ) d S , and M x y = ∬ S z ρ ( x , y , z ) d S . The coordinates of the center of mass of the shell are x ¯ = M y z m , y ¯ = M x z m , z ¯ = M x y m , where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible . 66. The constant-density hemispherical shall x 2 + y 2 + z 2 = a 2 , z ≥ 0
Mass and center of massLet S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes (see Section 13.6) are
M
y
z
=
∬
S
x
ρ
(
x
,
y
,
z
)
d
S
,
M
x
z
=
∬
S
y
ρ
(
x
,
y
,
z
)
d
S
, and
M
x
y
=
∬
S
z
ρ
(
x
,
y
,
z
)
d
S
. The coordinates of the center of mass of the shell are
x
¯
=
M
y
z
m
,
y
¯
=
M
x
z
m
,
z
¯
=
M
x
y
m
, where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible.
66. The constant-density hemispherical shall
x
2
+
y
2
+
z
2
=
a
2
,
z
≥
0
Question
Given the graph of f(z) below, find the graph of the derivative of f(z).
Select the correct answer below:
°
7-6-5-4-3
123
°
°
2
-7-6-5-4-3-
123
-°
2-4
-°-
°-
-7-6-5-4-3-2-1 1
5
+
Which of the functions shown below is differentiable at = 0?
Select the correct answer below:
-7-6-5-4-
-6-5-4-3-21,
-7-6-5-4-3-2
-7-6-5-4-3-2-1
2
4
5
6
-1
correct answer is Acould you please show me how to compute using the residue theorem
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.