Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. a. If the surface S is given by { ( x , y , z ) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , z = 10 } , then ∬ S f ( x , y , z ) d S = ∫ 0 1 ∫ 0 1 f ( x , y , 10 ) d x d y . b. If the surface S is given by { ( x , y , z ) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , z = x } , then ∬ S f ( x , y , z ) d S = ∫ 0 1 ∫ 0 1 f ( x , y , z ) d x d y . c. The surface r = ( v cos u , v sin u , v 2 ), for 0 ≤ u ≤ π , 0 ≤ v ≤ 2 , is the same as the surface r = 〈 v cos 2 u , v sin 2 u , v 〉 , for 0 ≤ u ≤ π / 2 , 0 ≤ v ≤ 4 . d. Given the standard parameterization of a sphere, the normal vectors t u × t v are outward normal vectors.
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. a. If the surface S is given by { ( x , y , z ) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , z = 10 } , then ∬ S f ( x , y , z ) d S = ∫ 0 1 ∫ 0 1 f ( x , y , 10 ) d x d y . b. If the surface S is given by { ( x , y , z ) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , z = x } , then ∬ S f ( x , y , z ) d S = ∫ 0 1 ∫ 0 1 f ( x , y , z ) d x d y . c. The surface r = ( v cos u , v sin u , v 2 ), for 0 ≤ u ≤ π , 0 ≤ v ≤ 2 , is the same as the surface r = 〈 v cos 2 u , v sin 2 u , v 〉 , for 0 ≤ u ≤ π / 2 , 0 ≤ v ≤ 4 . d. Given the standard parameterization of a sphere, the normal vectors t u × t v are outward normal vectors.
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. If the surface S is given by
{
(
x
,
y
,
z
)
:
0
≤
x
≤
1
,
0
≤
y
≤
1
,
z
=
10
}
, then
∬
S
f
(
x
,
y
,
z
)
d
S
=
∫
0
1
∫
0
1
f
(
x
,
y
,
10
)
d
x
d
y
.
b. If the surface S is given by
{
(
x
,
y
,
z
)
:
0
≤
x
≤
1
,
0
≤
y
≤
1
,
z
=
x
}
, then
∬
S
f
(
x
,
y
,
z
)
d
S
=
∫
0
1
∫
0
1
f
(
x
,
y
,
z
)
d
x
d
y
.
c. The surface r = (v cos u, v sin u, v2), for
0
≤
u
≤
π
,
0
≤
v
≤
2
, is the same as the surface
r
=
〈
v
cos
2
u
,
v
sin
2
u
,
v
〉
, for
0
≤
u
≤
π
/
2
,
0
≤
v
≤
4
.
d. Given the standard parameterization of a sphere, the normal vectors tu × tv are outward normal vectors.
Let the surface S: x? +y? +z? - 14x – 7y + 14 = 0. Which of the following is true?
3/39
O A.S is a sphere with center (-7,-7/2,0) and radius
2
5 /21
O B. S is a circle with center (-7,7/2,0) and radius
2
21
OC.S is a circle with center (7,0,7/2) and radius
O D. No correct answer
3/21
O E.S is a sphere with center (7,7/2,0) and radius
2
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.