Applications 53–56. Ideal flow A two-dimensional vector field describes ideal flow if it has both zero curl and zero divergence on a simply connected region (excluding the origin if necessary). a. Verify that the curl and divergence of the given field is zero. b. Find a potential function φ and a stream function ψ for the field. c. Verify that φ and ψ satisfy Laplace’s equation φ x x + φ y y = ψ x x + ψ y y = 0 . 54. F = ( x 3 – 3 xy 2 , y 3 – 3 x 2 y )
Applications 53–56. Ideal flow A two-dimensional vector field describes ideal flow if it has both zero curl and zero divergence on a simply connected region (excluding the origin if necessary). a. Verify that the curl and divergence of the given field is zero. b. Find a potential function φ and a stream function ψ for the field. c. Verify that φ and ψ satisfy Laplace’s equation φ x x + φ y y = ψ x x + ψ y y = 0 . 54. F = ( x 3 – 3 xy 2 , y 3 – 3 x 2 y )
Solution Summary: The author explains that the vector field F=langle x3-3y2 has zero curl and zero divergence.
53–56. Ideal flowA two-dimensional vector field describes ideal flow if it has both zero curl and zero divergence on a simply connected region (excluding the origin if necessary).
a. Verify that the curl and divergence of the given field is zero.
b. Find a potential function φ and a stream function ψ for the field.
c.Verify that φ and ψ satisfy Laplace’s equation
φ
x
x
+
φ
y
y
=
ψ
x
x
+
ψ
y
y
=
0
.
54. F = (x3 – 3xy2, y3 – 3x2y)
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Use a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.)
y = 100e0.01x
(x, y) =
y = 11,250
×
5. For the function y-x³-3x²-1, use
derivatives to:
(a) determine the intervals of increase and
decrease.
(b) determine the local (relative) maxima and
minima.
(e) determine the intervals of concavity.
(d) determine the points of inflection.
(e) sketch the graph with the above information
indicated on the graph.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.