Gradient fields on curves For the potential function φ and points A, B, C, and D on the level curve φ (x, y) = 0, complete the following steps.
a. Find the gradient field F =∇φ
b. Evaluate F at the points A, B, C, and D.
c. Plot the level curve φ(x, y) = 0 and the vectors F at the points A, B, C, and D.
44.
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
CALCULUS: EARLY TRANSCENDENTALS (LCPO)
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
College Algebra (7th Edition)
Elementary Statistics
- REFER TO IMAGEarrow_forward1. Consider the function z= f (x, y). a. Give the formula for the gradient at P= (a, b). b. Give the formula for Directional Derivative at P in the direction of unit vector u=.arrow_forwardI would need help with a, b, and c as mention below. (a) Find the gradient of f.(b) Evaluate the gradient at the point P.(c) Find the rate of change of f at P in the direction of the vector u.arrow_forward
- Determine whether the functions y₁ and y₂ are linearly dependent on the interval (0,1). y₁ = tan ²t-sec c²t₁ y₂ = 6 Select the correct choice below and, if necessary, fill in the answer box within your choice. © A. Since y₁ = (y₂ on (0,1), the functions are linearly independent on (0,1). (Simplify your answer.) B. 1 Y₂ on (0,1), the functions are linearly dependent on (0,1). Since y₁ = (Simplify your answer.) C. Since y₁ is not a constant multiple of y₂ on (0,1), the functions are linearly independent on (0,1). D. Since y₁ is not a constant multiple of y₂ on (0,1), the functions are linearly dependent on (0,1).arrow_forwardDetermine if each of the following vector fields is the gradient of a function f(x, y). If so, find all of the functions with this gradient. (a) (3x² + e¹0) i + (10x e¹0 - 9 siny) j (b) (10x el0y 9 sin y) i + (3x² + e¹0y) j a) I have placed my work and my answer on my answer sheetarrow_forward3. Let f(x, y) = sin x + sin y. (NOTE: You may use software for any part of this problem.) (a) Plot a contour map of f. (b) Find the gradient Vf. (c) Plot the gradient vector field Vf. (d) Explain how the contour map and the gradient vector field are related. (e) Plot the flow lines of Vf. (f) Explain how the flow lines and the vector field are related. (g) Explain how the flow lines of Vf and the contour map are related.arrow_forward
- Suppose f(x,y)=x/y, P=(0,−1) and v=3i+3j. A. Find the gradient of f.∇f= ____i+____jNote: Your answers should be expressions of x and y; e.g. "3x - 4y" B. Find the gradient of f at the point P.(∇f)(P)= ____i+____j Note: Your answers should be numbers C. Find the directional derivative of f at P in the direction of v.Duf=?Note: Your answer should be a number D. Find the maximum rate of change of f at P.maximum rate of change of f at P=? Note: Your answer should be a number E. Find the (unit) direction vector in which the maximum rate of change occurs at P.u= ____i+____jNote: Your answers should be numbersarrow_forward2. Calculate the gradient vector Vf of the function f (x, y) = x² – x + y - x²y - 2y2 at the point (2,1) and sketch it on the attached contour plot (you can save the picture, open in photo editor and use drawing tools). Explain in one paragraph (about 200-300 words) the meaning of the gradient vector Vf(2,1), negative gradient vector -Vf(2,1).arrow_forwardHelp with the following question. Please answer all parts.arrow_forward
- The figure shows level curves of a function f(x,y). Draw gradient vectors at Q and T. Is f(Q) longer than, shorter than, or the same length as vf(T)?arrow_forwardAnswer only letter barrow_forwardSuppose f (x, y) = , P = (-2, -1) and v = 2i - 4j. A. Find the gradient of f. (Vƒ)(x, y) =i+j Note: Your answers should be expressions of x and y; e.g. "3x - 4y" B. Find the gradient of f at the point P. (Vf) (P) =i+j Note: Your answers should be numbers C. Find the directional derivative of f at P in the direction of v. (Duf)(P) = Note: Your answer should be a number D. Find the maximum rate of change of f at P. Note: Your answer should be a number E. Find the (unit) direction vector w in which the maximum rate of change occurs at P. W i+ j Note: Your answers should be numbersarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning