Gradient fields on curves For the potential function φ and points A, B, C, and D on the level curve φ(x, y) = 0, complete the following steps.
a. Find the gradient field F = ∇φ.
b. Evaluate F at the points A, B, C, and D.
c. Plot the level curve φ(x, y) = 0 and the vectors F at the points A, B, C, and D.
46.
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
CALCULUS: EARLY TRANSCENDENTALS (LCPO)
Additional Math Textbook Solutions
Elementary Statistics (13th Edition)
Algebra and Trigonometry (6th Edition)
Pre-Algebra Student Edition
Introductory Statistics
Elementary Statistics
Calculus: Early Transcendentals (2nd Edition)
- REFER TO IMAGEarrow_forwardI would need help with a, b, and c as mention below. (a) Find the gradient of f.(b) Evaluate the gradient at the point P.(c) Find the rate of change of f at P in the direction of the vector u.arrow_forwardDetermine if each of the following vector fields is the gradient of a function f(x, y). If so, find all of the functions with this gradient. (a) (3x² + e¹0) i + (10x e¹0 - 9 siny) j (b) (10x el0y 9 sin y) i + (3x² + e¹0y) j a) I have placed my work and my answer on my answer sheetarrow_forward
- Suppose f(x,y)=x/y, P=(0,−1) and v=3i+3j. A. Find the gradient of f.∇f= ____i+____jNote: Your answers should be expressions of x and y; e.g. "3x - 4y" B. Find the gradient of f at the point P.(∇f)(P)= ____i+____j Note: Your answers should be numbers C. Find the directional derivative of f at P in the direction of v.Duf=?Note: Your answer should be a number D. Find the maximum rate of change of f at P.maximum rate of change of f at P=? Note: Your answer should be a number E. Find the (unit) direction vector in which the maximum rate of change occurs at P.u= ____i+____jNote: Your answers should be numbersarrow_forward3. Let f(x, y) = sin x + sin y. (NOTE: You may use software for any part of this problem.) (a) Plot a contour map of f. (b) Find the gradient Vf. (c) Plot the gradient vector field Vf. (d) Explain how the contour map and the gradient vector field are related. (e) Plot the flow lines of Vf. (f) Explain how the flow lines and the vector field are related. (g) Explain how the flow lines of Vf and the contour map are related.arrow_forwardThe figure shows level curves of a function f(x,y). Draw gradient vectors at Q and T. Is f(Q) longer than, shorter than, or the same length as vf(T)?arrow_forward
- Suppose f (x, y) = , P = (-2, -1) and v = 2i - 4j. A. Find the gradient of f. (Vƒ)(x, y) =i+j Note: Your answers should be expressions of x and y; e.g. "3x - 4y" B. Find the gradient of f at the point P. (Vf) (P) =i+j Note: Your answers should be numbers C. Find the directional derivative of f at P in the direction of v. (Duf)(P) = Note: Your answer should be a number D. Find the maximum rate of change of f at P. Note: Your answer should be a number E. Find the (unit) direction vector w in which the maximum rate of change occurs at P. W i+ j Note: Your answers should be numbersarrow_forwardHelp with the following question. Please answer all parts.arrow_forward2. Calculate the gradient vector Vf of the function f (x, y) = x² – x + y - x²y - 2y2 at the point (2,1) and sketch it on the attached contour plot (you can save the picture, open in photo editor and use drawing tools). Explain in one paragraph (about 200-300 words) the meaning of the gradient vector Vf(2,1), negative gradient vector -Vf(2,1).arrow_forward
- At a point (xo, yo), the gradient vector of a function is Vf = (1, 2). Which of the following must be true about the level curve f(x, y) = k that passes through the point (xo, yo). Select one: ○ a. The tangent line to the level curve at (20, yo) has a slope of 1/2. O b. The tangent line to the level curve at (xo, yo) has a slope of -1/2. ○ c. The tangent line to the level curve at (xo, yo) has a slope of -2. ○ d. The tangent line to the level curve at (xo, yo) has a slope of 2.arrow_forwardFind the gradient vector of the function f(x,y) =. Select one: O None of the others. O oarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning