Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = –k▿T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s-K. A temperature function for a region D is given. Find the net outward heat flux
44. T(x, y, z) = 100 + x2 + y2 + z2; D is the unit sphere centered at the origin.
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
CALCULUS: EARLY TRANSCENDENTALS (LCPO)
Additional Math Textbook Solutions
Pre-Algebra Student Edition
Algebra and Trigonometry (6th Edition)
Elementary Statistics
Basic Business Statistics, Student Value Edition
Elementary Statistics: Picturing the World (7th Edition)
- Tsunami Waves and BreakwatersThis is a continuation of Exercise 16. Breakwaters affect wave height by reducing energy. See Figure 5.30. If a tsunami wave of height H in a channel of width W encounters a breakwater that narrows the channel to a width w, then the height h of the wave beyond the breakwater is given by h=HR0.5, where R is the width ratio R=w/W. a. Suppose a wave of height 8 feet in a channel of width 5000feet encounters a breakwater that narrows the channel to 3000feet. What is the height of the wave beyond the breakwater? b. If a channel width is cut in half by a breakwater, what is the effect on wave height? 16. Height of Tsunami WavesWhen waves generated by tsunamis approach shore, the height of the waves generally increases. Understanding the factors that contribute to this increase can aid in controlling potential damage to areas at risk. Greens law tells how water depth affects the height of a tsunami wave. If a tsunami wave has height H at an ocean depth D, and the wave travels to a location with water depth d, then the new height h of the wave is given by h=HR0.25, where R is the water depth ratio given by R=D/d. a. Calculate the height of a tsunami wave in water 25feet deep if its height is 3feet at its point of origin in water 15,000feet deep. b. If water depth decreases by half, the depth ratio R is doubled. How is the height of the tsunami wave affected?arrow_forwardFind the constant of proportionality. z is directly proportional to the sum of x and y. If x=2 and y=5, then z=28.arrow_forwardFind the constant of proportionality. y is directly proportional to x. If x=30, then y=15.arrow_forward
- The kinetic energy E of an object varies jointly with the object’s mass m and the square of the object’s velocity v . An object with a mass of 50 kilograms traveling at 16 meters per second has a kinetic energy of 6400 joules. What is the kinetic energy of an object with a mass of 70 kilograms traveling at 20 meters per second?arrow_forwardDefine Newton’s Law of Cooling. Then name at least three real-world situations where Newton’s Law of Cooling would be applied.arrow_forwardFourier's Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -KVT, which means that heat energy flows from hot regions to cold regions. The constant k is called the conductivity, which has metric units SS S of J/m-s-K or W/m-K. A temperature function T for a region D is given below. Find the net outward heat flux boundary S of D. It may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1. T(x,y,z) = 100 - 5x+ 5y +z; D = {(x,y,z): 0≤x≤5, 0≤y≤4, 0≤z≤ 1} The net outward heat flux across the boundary is (Type an exact answer, using as needed.) -KSS S F.ndS = -k VT n dS across thearrow_forward
- Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + x + 2y + z;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forwardHeat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + e-z;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forwardHeat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + x2 + y2 + z2;;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forward
- Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100e-x2 - y2 - z2; D is the sphere of radius a centered at the origin.arrow_forwardAb. 56 Advanced matharrow_forwardFourier's Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F= -KVT, which means that heat energy flows from hot regions to cold regions. The constant k> 0 is called Fonds=- the conductivity, which has metric units of J/(m-s-K). A temperature function T for a region D is given below. Find the net outward heat flux -KSS VT n dS across the boundary S of D. It may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k=1. T(x,y,z)=85ex²-y²-2²: D is the sphere of radius a centered at the origin. The net outward heat flux across the boundary is 480x³ (Type an exact answer, using x as needed.)arrow_forward
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning