Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in Stakes’ Theorem to determine the value of the surface integral ∬ S ( ∇ × F ) ⋅ n d S . Assume that n points in an upward direction. 18. F = r /| r |; S is the paraboloid x = 9 – y 2 – z 2 for 0 ≤ x ≤ 9 (excluding its base), where r = 〈 x , y , z 〉.
Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in Stakes’ Theorem to determine the value of the surface integral ∬ S ( ∇ × F ) ⋅ n d S . Assume that n points in an upward direction. 18. F = r /| r |; S is the paraboloid x = 9 – y 2 – z 2 for 0 ≤ x ≤ 9 (excluding its base), where r = 〈 x , y , z 〉.
Solution Summary: The author explains Stokes' Theorem: Let S be an oriented surface in R3 with a piecewise-smooth closed boundary C whose orientation is consistent with that of S
Stokes’ Theorem for evaluating surface integralsEvaluate the line integral in Stakes’ Theorem to determine the value of the surface integral
∬
S
(
∇
×
F
)
⋅
n
d
S
. Assume thatnpoints in an upward direction.
18.F = r/|r|; S is the paraboloid x = 9 – y2 – z2 for 0 ≤ x ≤ 9 (excluding its base), where r = 〈x, y, z〉.
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in Stokes’ Theorem to determine the value of the surface integral ∫∫S (∇ x F) ⋅ n dS. Assume n points in an upward direction.
F = ⟨4x, -8z, 4y⟩; S is the part of the paraboloidz = 1 - 2x2 - 3y2 that lies within the paraboloid z = 2x2 + y2 .
Find the surface area of the "Coolio McSchoolio" surface shown below using the formula:
SA = integral, integral D, ||ru * rv||dA
%3D
The parameterization of the surface is:
r(u,v) = vector brackets (uv, u + v, u - v) where u^2 + v^2 <= 1
A.) (pi/3)(6squareroot(6) - 8)
B.) (pi/3)(6squareroot(6) - 2squareroot(2))
C.) (pi/6)(2squareroot(3) - squareroot(2))
D.) (pi/6)(squareroot(6) - squareroot(2))
E.) (5pi/6)(6 - squareroot(2))
Verify Stokes' theorem. Assume that the surface S is oriented upward. F=3zi−5xj+2yk; S that portion of the paraboloid z=36−x^2−y^2 for z≥0 I'm having trouble finding the normal n*dS in Stokes's Theorem
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.