Evaluating line integrals Evaluate the line integral ∫ C F ⋅ d r for the following vector fields F and curves C in two ways. a. By parameterizing C b. By using the Fundamental Theorem for line integrals, if possible 25. F = ∇ ( x y z ) ; C : r ( t ) = 〈 cos t , sin t , t / π 〉 , for 0 ≤ t ≤ π
Evaluating line integrals Evaluate the line integral ∫ C F ⋅ d r for the following vector fields F and curves C in two ways. a. By parameterizing C b. By using the Fundamental Theorem for line integrals, if possible 25. F = ∇ ( x y z ) ; C : r ( t ) = 〈 cos t , sin t , t / π 〉 , for 0 ≤ t ≤ π
Solution Summary: The author evaluates the integral of the function F=Delta(xyz) by using the parametric description of C.
Evaluating line integralsEvaluate the line integral
∫
C
F
⋅
d
r
for the following vector fieldsFand curves C in two ways.
a. By parameterizing C
b. By using the Fundamental Theorem for line integrals, if possible
25.
F
=
∇
(
x
y
z
)
;
C
:
r
(
t
)
=
〈
cos
t
,
sin
t
,
t
/
π
〉
,
for 0 ≤ t ≤ π
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Suppose the number of people who register to attend the Tucson Festival of Books can be modeled by P(t) = k(1.1),
where t is the number of days since the registration window opened. Assume k is a positive constant.
Which of the following represents how long it will take in days for the number of people who register to double?
t =
In(1.1)
In(2)
In(2)
t =
In(1.1)
In(1.1)
t =
t =
t =
In(2) - In(k)
In(2)
In(k) + In(1.1)
In(2) - In(k)
In(1.1)
Use the method of washers to find the volume of the solid that is obtained
when the region between the graphs f(x) = √√2 and g(x) = secx over the
interval ≤x≤ is rotated about the x-axis.
5
Use the method of disks to find the volume of the solid that is obtained
when the region under the curve y = over the interval [4,17] is rotated
about the x-axis.
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY