10 Given the Jordan curve y that is the counterclockwise oriented boundary of the set T = {z = x + iy : x, y Є R : x ≤ |y|, |z| ≤ 3}, the complex line integral z2 2(z − 1) (z² + 2iz – 1)` dz equals (A) 1- (B) 2π (i + 1) 2 (C) π (i − 1 ½) - П (D) (i − 2) 17/7

Elements Of Modern Algebra
8th Edition
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Gilbert, Linda, Jimmie
Chapter5: Rings, Integral Domains, And Fields
Section5.4: Ordered Integral Domains
Problem 8E: If x and y are elements of an ordered integral domain D, prove the following inequalities. a....
icon
Related questions
Question

the correct answer is C
could you please show me how to do it using the residue theorem

10 Given the Jordan curve y that is the counterclockwise oriented boundary of the set
T = {z = x + iy : x, y Є R : x ≤ |y|, |z| ≤ 3}, the complex line integral
z2
2(z − 1) (z² + 2iz – 1)`
dz
equals
(A)
1-
(B) 2π
(i + 1)
2
(C) π (i − 1 ½)
-
П
(D) (i − 2) 17/7
Transcribed Image Text:10 Given the Jordan curve y that is the counterclockwise oriented boundary of the set T = {z = x + iy : x, y Є R : x ≤ |y|, |z| ≤ 3}, the complex line integral z2 2(z − 1) (z² + 2iz – 1)` dz equals (A) 1- (B) 2π (i + 1) 2 (C) π (i − 1 ½) - П (D) (i − 2) 17/7
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Modern Algebra
Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,