Concept explainers
A system consists of three particles A, B, and C. We know that
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Vector Mechanics for Engineers: Dynamics
- Q4. As shown in the image below, the freight cars A and B are approaching each other, and they have a mass of mA = 23 Mg and mB = 15 Mg, respectively. The directions of their initial velocities are shown in the image, and the speeds are VÃ,1 · 2.5 m/s and VB,1 = 2.1 m/s. If the two cars collide and get stuck together, then move with the same velocity, determine their common velocity after the collision. Right is considered the positive direction and negative sign must be included if they move to the left after the collision. Please pay attention: the numbers may change since they are randomized. Your answer must include 3 places after the decimal point, and proper Sl unit. A Your Answer: VA,1 Answer units B VB.1arrow_forward3. A mass m (2.0 kg) is attached to a horizontal spring of spring constant k (25 N/m) which is held stretched a distance x = 0.25 m from its relaxed position by a force, and then released. The spring compresses, pulling the mass. Assume there is no friction. a. Determine the speed of the mass when the spring returns to its relaxed position. b. Determine the speed of the mass when the spring is compressed by x/2.arrow_forwardFive passenger (each with a mass of 100kg) are travelling on a car (approximate mass is 1000kg) at a velocity of 72 kph. Find the kinetic energy of the combined mass.arrow_forward
- 4. A 3-kg ball is attached to a rope connected to the center of a table and initially travelling in a circle of constant radius 4 m with a speed of 3 m/s. The rope is then pulled inward through a hole in the center of the table with a constant speed of 1 m/s. Determine the ball's velocity and speed at the instant that its distance from the center of the table is 2 m. Also calculate the amount of work done by the rope. Neglect friction.arrow_forwardA system consists of three identical 14.32-lb particles A, B, and C. The velocities of the particles are, respectively, vA = vA j, vB = vBi, and vC = vCk. The angular momentum of the system about O expressed in ft·lb·s is HO = -1.2k. Determine the velocities of the particles. (You must provide an answer before moving to the next part.) The velocity of particle A is ( ft/s)j. The velocity of particle B is ( ft/s)i. The velocity of particle C is ( ft/s)k.arrow_forwardIn the figure, block 2 (mass 1.70 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 232 N/m. The other end of the spring is fixed to a wall. Block 1 (mass 1.30 kg), traveling at speed v1 = 3.40 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed? Number i Units marrow_forward
- A block of mass 0.25 kg travels down a frictionless surface with a velocity of 4.5 m/s to the left and collides with a second block of mass 1.5 kg with a velocity of 0.5 m/s to the right. The two carts stick together after the collision. (1) Find the total momentum of the two carts just before the collision. (2) Find the velocity of the two carts just after the collision.arrow_forwardvehicles are approaching a road junction, both moving with speed (12.5 m/s). One vehicle has mass 1000 kg and the other mass kg, and the roads meet at an angle of 60° as shown. The vehicles collide and initially move as a single body. ss of Car A= 100 kg ss of Car B = 70 kg A 12.5 m/s B 60° 12.5 m/s culate the magnitude of the velocity of the two vehicles immediately after the collision (treating them as a gle body) (m/s) culate the linear momentum in the vector form of car B. (m/s) culate the linear momentum in the vector form of car A. (m/s) Choose... Choose... Choose... 4arrow_forwarda) Determine the Direction Cosine Matrices N[C]B and B[C]Narrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY