Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14.2, Problem 14.50P
Three small spheres A, B, C, each of mass m, are connected to a small ring D of negligible mall by means of three inextensible, inelastic cords of length l. The spheres can slide freely on a frictionless horizontal surface and are rotating initially at a speed
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 4: Amerry-go-round is a playground ride that consists of a large disk mounted to
that it can freely rotate in a horizontal plane. The merry-go-round shown is initially at rest, has a
radius R = 1.1 meters, and a mass M= 286 kg. A small boy of mass m = 41 kg runs tangentially to
the merry-go-round at a speed of v = 2.5 m/s, and jumps on.
Randomized Variables
R = 1.1 meters
M= 286 kg
m = 41 kg
v= 2.5 m/s
Part (a) Calculate the moment of inertia of the merry-go-round, in kg · m?.
I=
sin()
cos()
tan()
8 9
HOME
cotan()
asin()
acos()
E
4
5
atan()
acotan()
sinh()
*1|2|3
cosh()
tanh()
cotanh()
+| -
END
ODegrees O Radians
Vol BACKSPACE DEL CLEAR
Submit
Feedback
I give up!
Hint
Part (b) Immediately before the boy jumps on the merry go round, calculate his angular speed (in radians/second) about the central axis of the
merry-go-round.
Part (c) Immediately after the boy jumps on the merry go round, calculate the angular speed in radians/second of the merry-go-round and boy.
Part (d) The…
Slider C has a mass of 0.5 kg and
may move in a slot cut in arm AB,
which rotates at constant speed in a
horizontal plane. The slider is
attached to a spring of constant
k = 150 N/m, which is unstretched
when r = 0.
When arm AB rotates about the
vertical axis, the slider moves
without friction outward along the
smooth slot cut. Determine for the
position r = 80 mm:
a) The constant speed (V) of the
slider.
b) The normal force (N) exerted on
the slider by arm AB.
A
r=80mm
B
Two identical spheres A and B each of mass m , are attached to an inextensible inelastic cord of length L and are resting at a distance a from each other on a frictionless horizontal surface. Sphere B is given a velocity v0 in a direction perpendicular to line AB and moves it without friction until it reaches B ’ where the cord becomes taut. Draw the impulse-momentum diagram that can be used to determine the magnitude of the velocity of each sphere immediately after the cord has become taut.
Chapter 14 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - An airline employee tosses two suitcases with...Ch. 14.1 - A bullet is fired with a horizontal velocity of...Ch. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9. assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - A 300-kg space vehicle traveling with a velocity...Ch. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - Car A was traveling east at high speed when it...Ch. 14.1 - Knowing that the coordinates of the utility pole...Ch. 14.1 - An expert archer demonstrates his ability by...Ch. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - In a game of pool, ball A is moving with a...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation Ho=rmv+HG between the angular...Ch. 14.1 - Show that Eq. (14.23) may be derived directly from...Ch. 14.1 - Consider the frame of reference Ax'y'z' in...Ch. 14.1 - Show that the relation MA=HA where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - Prob. 14.32PCh. 14.2 - In Prob. 14.6. determine the work done by the...Ch. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Two automobiles A and B, of mass mA and mB,...Ch. 14.2 - It is assumed that each of the two automobiles...Ch. 14.2 - Solve Sample Prob. 14.5, assuming that cart A is...Ch. 14.2 - Two hemispheres are held together by a cord which...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - Three spheres, each with a mass of m, can slide...Ch. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - The 2-kg sub-satellite B has an initial velocity...Ch. 14.2 - A 900-lb space vehicle traveling with a velocity...Ch. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Three identical small spheres, each of weight 2...Ch. 14.2 - Three small spheres A, B, C, each of mass m, are...Ch. 14.2 - In a game of billiards, ball A is given an initial...Ch. 14.2 - For the game of billiards of Prob. 14.51, it is...Ch. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.3 - A stream of water with a density of =1000kg/m3 is...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - A rotary power plow is used to remove snow from a...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - Sand falls from three hoppers onto a conveyor belt...Ch. 14.3 - The stream of water shown flows at a rate of 550...Ch. 14.3 - The nozzle shown discharges water at the rate of...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m/min...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m3/min...Ch. 14.3 - Coal is being discharged from a first conveyor...Ch. 14.3 - The total drag due to air friction on a jet...Ch. 14.3 - While cruising in level flight at a speed of 600...Ch. 14.3 - In order to shorten the distance required for...Ch. 14.3 - The helicopter shown can produce a maximum...Ch. 14.3 - Prior to takeoff, the pilot of a 3000-kg...Ch. 14.3 - The jet engine shown scoops in air at A at a rate...Ch. 14.3 - A jet airliner is cruising at a speed of 900 km/h...Ch. 14.3 - A 16-Mg jet airplane maintains a constant speed of...Ch. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - The wind turbine generator shown has an...Ch. 14.3 - A wind turbine generator system having a diameter...Ch. 14.3 - While cruising in level flight at a speed of 570...Ch. 14.3 - In a Pelton-wheel turbine, a stream of water is...Ch. 14.3 - A circular reentrant orifice (also called Borda’s...Ch. 14.3 - A railroad car with length L and mass mg when...Ch. 14.3 - The depth of water flowing in a rectangular...Ch. 14.3 - Determine the rate of flow in the channel of Prob....Ch. 14.3 - A chain of length I and mass m lies in a pile on...Ch. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - The ends of a chain lie in piles at A and C. When...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - A rocket sled bums fuel at the constant rate of...Ch. 14.3 - A space vehicle describing a circular orbit about...Ch. 14.3 - A 540-kg spacecraft is mounted on top of a rocket...Ch. 14.3 - The rocket used to launch the 540-kg spacecraft of...Ch. 14.3 - The weight of a spacecraft, including fuel, is...Ch. 14.3 - The rocket engines of a spacecraft are fired to...Ch. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb. including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - For the spacecraft and the two-stage launching...Ch. 14.3 - In a jet airplane, the kinetic energy imparted to...Ch. 14.3 - In a rocket, the kinetic energy imparted to the...Ch. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 30-g bullet is fired with a velocity of 480 m/s...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - In a game of pool, ball A is moving with a...Ch. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - A 15-lb block B is at rest and a spring of...Ch. 14 - Car A of mass 1800 kg and car B of mass 1700 kg...Ch. 14 - The nozzle shown discharges a stream of water at...Ch. 14 - An airplane with a weight W and a total wing span...Ch. 14 - The final component of a conveyor system receives...Ch. 14 - A garden sprinkler has four rotating arms, each of...Ch. 14 - A chain of length I and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The question is attached below.arrow_forwardPROBLEM NO. 3 A 5-kg collar slides from A to B along a frictionless vertical rod as shown. The spring attached to the collar has an undeformed (initial) length of 4 m and a spring constant of 30 N/m. What is the collar's velocity at point B? 8.0 m A B 1.5 marrow_forwardTwo 2.6-lb collars A and B can slide without friction on a frame, consisting of the horizontal rod OE and the vertical rod CD, which is free to rotate about CD . The two collars are connected by a cord running over a pulley that is attached to the frame at O and a stop prevents collar B from moving. The frame is rotating at the rate 0 =12 rad/s and r= 0.6 ft when the stop is removed allowing collar A to move out along rod OE . Neglecting friction and the mass of the frame, determine, for the position r= 1.2 ft, (a) the transverse component of the velocity of collar A, (b) the tension in the cord and the acceleration of collar A relative to the rod OE.arrow_forward
- Two beads of mass m are initially at rest at the top of a frictionless hoop of mass M and radius R, which stands vertically on the ground. The beads, being strung on the hoop, are constrained to move along the hoop’s circular path. The beads are given tiny kicks, and they slide down the hoop, one to the right and one to the left. What is the largest value of m/M for which the hoop never rises up off the ground? (Given a sufficiently large ratio of m/M the normal force of the beads on the hoop can indeed cause it to jump off of the ground!) Some thoughts/hints about this problem:(a) It is important to think about the direction of the Normal force as the beads move around the hoop. The hoop is exerting a normal force on the beads which are constraining them to stay on the wire as they move around the hoop. The beads are also exerting a normal force on the hoop which is what will make the hoop jump.(b) What happens to the direction of the normal force exerted by the hoop on the beads as…arrow_forwardTwo steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b = 111 mm. A horizontal force of magnitude F = 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. Answers: a= 0 = IN PI 771 m/s² rad/s²arrow_forwardTwo steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b= 111 mm. A horizontal force of magnitude F= 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. m Answers: a = O = IN 7. 77 M m/s² rad/s²arrow_forward
- (2) A 5 lb ball is attached to a 3 ft long rope and it rotates in a vertical circular path at a constant tangent velocity of 30 ft/s. (a) Determine the tension in the rope when the ball is at point A. (b) Determine the tension in the rope when the ball is at point B. B 3 ft Aarrow_forward2 kg The centers of two spheres A and B with masses mA 1 kg and mg are a distance ro 1m apart. B is fixed in space, and A is initially at rest. Using Eq. (1.5) on p. 3, which is Newton's universal law of gravitation, determine the speed with which A impacts B if the radii of the two spheres are A = 0.05 m and FB = 0.15 m. Assume that the two masses are infinitely far from any other mass so that they are only influenced by their mutual attraction. Τοarrow_forwardASAParrow_forward
- A wedge of mass 2m placed on a rough surface, its part AB is circular of radius R. A small block of mass m is released from rest at A. Find minimum value of friction between wedge and ground so that wedge remains at rest. A m smooth R 2m -B rough (A) 3mg mg (В) 5mg (C) 3mg (D)arrow_forwardA 300-g block is released from rest after a spring of constant k= 600 N/m has been compressed 160 mm. Determine the force exerted by the loop ABCD on the block as the block passes through (a) point A, (b) Point B, (c) . Assume no friction.arrow_forwardThe car of mass rolls from rest with negligible friction down the curved ramp and around the circular loop The initial height of the center of mass of the car is H. Assume the center of mass of the car is at a height equal to the diameter d of the loop when the car is at the top of the loop. (a) In terms of the given quantities and any fundamental constants, derive an equation for the speed vtop at the top of the loop. (Neglect the rotational kinetic energy of the wheels). (b) The car is upside down at the top of the loop. Derive an equation for the minimum speed vmin necessary to make the loop.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY