Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.1, Problem 14.17P
A 2-kg model rocket is launched vertically and reaches an altitude of 70 m with a speed of 30 m/s at the end of powered flight, time t = 0. As the rocket approaches its maximum altitude, it explodes into two parts of masses = 0.7 kg and mg = 1.3 kg. Part A is observed to strike the ground 80 m west of the launch point at t = 6 s. Determine the position of part B at that time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 0.5-oz model rocket is launched vertically from rest at time t = 0 with a constant
thrust of 0.9 Ib for 0.3 s and no thrust for t > 0.3 s. Neglecting air resistance and the
decrease in mass of the rocket, determine (a) the maximum height h reached by the
rocket, (b) the time required to reach this maximum height.
%D
h
Two equal-length springs are "nested" together in order to form a shock absorber. If it is designed to stop the
motion of a 2-kg mass that is dropped 0.5 m above the top of the springs from rest position, and the
maximum compression of the springs is to be 0.2 m, determine the required stiffness of the inner spring, K,
if the outer spring has a stiffness k, = 400 N/m.
A 0.80 kg mass is hung from a string of 0.70 meters. On its next pass, the mass strikes a spring, With spring constant 15 N/M,At the very bottom of its trajectory. If all the masses energy is transferred to the spring, how much does the spring compress relative to its equilibrium position?
Chapter 14 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - An airline employee tosses two suitcases with...Ch. 14.1 - A bullet is fired with a horizontal velocity of...Ch. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9. assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - A 300-kg space vehicle traveling with a velocity...Ch. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - Car A was traveling east at high speed when it...Ch. 14.1 - Knowing that the coordinates of the utility pole...Ch. 14.1 - An expert archer demonstrates his ability by...Ch. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - In a game of pool, ball A is moving with a...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation Ho=rmv+HG between the angular...Ch. 14.1 - Show that Eq. (14.23) may be derived directly from...Ch. 14.1 - Consider the frame of reference Ax'y'z' in...Ch. 14.1 - Show that the relation MA=HA where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - Prob. 14.32PCh. 14.2 - In Prob. 14.6. determine the work done by the...Ch. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Two automobiles A and B, of mass mA and mB,...Ch. 14.2 - It is assumed that each of the two automobiles...Ch. 14.2 - Solve Sample Prob. 14.5, assuming that cart A is...Ch. 14.2 - Two hemispheres are held together by a cord which...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - Three spheres, each with a mass of m, can slide...Ch. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - The 2-kg sub-satellite B has an initial velocity...Ch. 14.2 - A 900-lb space vehicle traveling with a velocity...Ch. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Three identical small spheres, each of weight 2...Ch. 14.2 - Three small spheres A, B, C, each of mass m, are...Ch. 14.2 - In a game of billiards, ball A is given an initial...Ch. 14.2 - For the game of billiards of Prob. 14.51, it is...Ch. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.3 - A stream of water with a density of =1000kg/m3 is...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - A rotary power plow is used to remove snow from a...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - Sand falls from three hoppers onto a conveyor belt...Ch. 14.3 - The stream of water shown flows at a rate of 550...Ch. 14.3 - The nozzle shown discharges water at the rate of...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m/min...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m3/min...Ch. 14.3 - Coal is being discharged from a first conveyor...Ch. 14.3 - The total drag due to air friction on a jet...Ch. 14.3 - While cruising in level flight at a speed of 600...Ch. 14.3 - In order to shorten the distance required for...Ch. 14.3 - The helicopter shown can produce a maximum...Ch. 14.3 - Prior to takeoff, the pilot of a 3000-kg...Ch. 14.3 - The jet engine shown scoops in air at A at a rate...Ch. 14.3 - A jet airliner is cruising at a speed of 900 km/h...Ch. 14.3 - A 16-Mg jet airplane maintains a constant speed of...Ch. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - The wind turbine generator shown has an...Ch. 14.3 - A wind turbine generator system having a diameter...Ch. 14.3 - While cruising in level flight at a speed of 570...Ch. 14.3 - In a Pelton-wheel turbine, a stream of water is...Ch. 14.3 - A circular reentrant orifice (also called Borda’s...Ch. 14.3 - A railroad car with length L and mass mg when...Ch. 14.3 - The depth of water flowing in a rectangular...Ch. 14.3 - Determine the rate of flow in the channel of Prob....Ch. 14.3 - A chain of length I and mass m lies in a pile on...Ch. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - The ends of a chain lie in piles at A and C. When...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - A rocket sled bums fuel at the constant rate of...Ch. 14.3 - A space vehicle describing a circular orbit about...Ch. 14.3 - A 540-kg spacecraft is mounted on top of a rocket...Ch. 14.3 - The rocket used to launch the 540-kg spacecraft of...Ch. 14.3 - The weight of a spacecraft, including fuel, is...Ch. 14.3 - The rocket engines of a spacecraft are fired to...Ch. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb. including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - For the spacecraft and the two-stage launching...Ch. 14.3 - In a jet airplane, the kinetic energy imparted to...Ch. 14.3 - In a rocket, the kinetic energy imparted to the...Ch. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 30-g bullet is fired with a velocity of 480 m/s...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - In a game of pool, ball A is moving with a...Ch. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - A 15-lb block B is at rest and a spring of...Ch. 14 - Car A of mass 1800 kg and car B of mass 1700 kg...Ch. 14 - The nozzle shown discharges a stream of water at...Ch. 14 - An airplane with a weight W and a total wing span...Ch. 14 - The final component of a conveyor system receives...Ch. 14 - A garden sprinkler has four rotating arms, each of...Ch. 14 - A chain of length I and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Blocks A and B are connected by a cord that passes over pulleys and through a collar C. The system is released from rest when x = 2.7 m. As block A rises, it strikes collar C with perfectly plastic impact (e = 0). After impact, the two blocks and the collar keep moving until they come to another stop. Consider, mA = 10.0 kg, mg= 11.0 kg, and mc = 3.0 kg, respectively. T A MA mc C Determine the value of x at the end of one compete cycle. The value of x at the end of one compete cycle is m. B maarrow_forwardM= 2,500 kg m= 800 kgarrow_forwardDuring the filming of an adventure movie, the 55.0-kg heroine makes a flying leap, grabbing her 70.0-kg partner as he stands on the edge of a building. The building is 20.0 m high, and after the collision the pair fall together of the building with an initial velocity that is horizontal. In the stunt, the pair are to fall into a swimming pool below. The near edge of the pool is 3.00 m from the wall of the building and the far edge is 15.0 m from the wall. a. What speed must the heroine (before collision) have in order for the pair to land in the center of the pool? b. lsWhat are the limits of her speed (before collision) resulting in a reasonably safe landing (1.00 m from either edge)? (a) (b) | 目 # 曲arrow_forward
- Blocks A and B are connected by a light inextensible string and are initially at rest. The system is now pulled upwards by a force of magnitude F = 105 N as shown in diagram Q. F A Diagram Q If block B moves down through 15.5 m in 6.00 s and the tension in the string joining the blocks is 52.0 N, what is the mass of block A? IIarrow_forward8. In the figure, block 2 (mass 1.0 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 200 N/m. The other end of the spring is fixed to a wall. Block 1 (mass 2.0 kg), traveling at speed v₁ = 4.0 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed? 200000arrow_forwardThe 450-kg ram of a pile driver falls 1.4 m from rest and strikes the top of a 240-kg pile embedded 0.9 m in the ground. Upon impact the ram is seen to move with the pile with no noticeable rebound. Determine the velocity v of the pile and ram imme- diately after impact. Can you justify using the principle of conservation of momentum even though the weights act during the impact? [ Ans: v = 3.42 m/s 14 m 09marrow_forward
- dynamicsarrow_forwardQ.1. A block of mass m = 0.5 kg is pushed against a horizontal spring of spring constant k = 450 N/m and negligible mass. The spring is compressed a distance x from equilibrium, and then released from rest. The block travels along a frictionless horizontal surface and reaches point B with a speed vg = 12 m/s. Take g = 10 m/s2. The compression of the spring is: a. x = 0.16 m b. x = 0.467 m c. x = 0.533 m B. d. x = 0.4 marrow_forwardA rocketship has 9 modules each with a mass of 15 200 kg and moves at a speed of 7.0 km/s. One of the modules is explosively propelled away from the rocketship at a speed of 1350 km/h with respect to the rocketship, opposite in direction from the original travel direction of the rocket ship.What is the resulting change in the speed of the rocketship?arrow_forward
- The parabolic guide wire shown below is smooth and lies in a vertical plane. A 0.6 kg mass slider is released from rest at point A. The spring has an unstretched length of 200 mm and a spring constant of 120 N/m. Determine the speed of the slider when it reaches point B and the force exerted by the wire. 0.5 m 0.5 m A 0.6 kg 120 N/m 0.25 m 0.25 m Parabolic Вarrow_forwardA lightweight drone (1.00 kg) is launched at 800 m high and moves upward at a constant velocity (while ignoring the effects of gravity only on the drone). The balloon, when measured at a horizontal distance from you, is about 1600 m away from you. At the moment when the drone moves, you shoot a bullet (weight =180 g) with an initial velocity of 1009 m/s at a fixed angle α, where sin α=3/5 and cos α= 4/5. (g = 9.8 m/s2) Question: Provided that the collision is inelastic, calculate the speed after the collisionarrow_forwardSlider C has a mass of 0.5 kg and may move in a slot cut in arm AB, which rotates at constant speed in a horizontal plane. The slider is attached to a spring of constant k = 150 N/m, which is unstretched when r = 0. When arm AB rotates about the vertical axis, the slider moves without friction outward along the smooth slot cut. Determine for the position r = 80 mm: a) The constant speed (V) of the slider. b) The normal force (N) exerted on the slider by arm AB. A r=80mm Barrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY