Concept explainers
Three identical small spheres, each of weight 2 Ib, can slide freely on a horizontal frictionless surface. Spheres B and C are connected by a light rod and are at rest in the position shown when sphere B is struck squarely by sphere A which is moving to the right with a velocity
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Vector Mechanics for Engineers: Dynamics
- need answers in 20 minutesarrow_forwardThree spheres, each with a mass of m , can slide freely on a frictionless, horizontal surface. Spheres A and B are attached to an inextensible, inelastic cord with a length I and are at rest in the position shown when sphere B is struck squarely by sphere C , which is moving with a velocity v0 . Knowing that the cord is taut when sphere B is struck by sphere C and assuming perfectly elastic impact between B and C , and thus the conservation of energy for the entire system, determine the velocity of each sphere immediately after impact.arrow_forwardA 3-kg block B is moving with a velocity vo = 1.5 m/s as it hits the 1.25-kg sphere A, which is at rest and hanging from a cord attached at O. Knowing that e = 0.75 between the block and the sphere, which of the following best describes the velocity of sphere A after impact?arrow_forward
- 2 kg The centers of two spheres A and B with masses mA 1 kg and mg are a distance ro 1m apart. B is fixed in space, and A is initially at rest. Using Eq. (1.5) on p. 3, which is Newton's universal law of gravitation, determine the speed with which A impacts B if the radii of the two spheres are A = 0.05 m and FB = 0.15 m. Assume that the two masses are infinitely far from any other mass so that they are only influenced by their mutual attraction. Τοarrow_forwardMembers ABC has a mass of 2.4 kg and is attached to a pin support at B. An 800-g sphere D strikes the end of member ABC with a vertical velocity v1 of 3 m/s. Knowing that L = 750 mm and that the coefficient of restitution between the sphere and member ABC is 0.5, determine immediately after the impact (a) the angular velocity of member ABC (b) the velocity of the sphere.arrow_forwardTwo steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b = 111 mm. A horizontal force of magnitude F = 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. Answers: a= 0 = IN PI 771 m/s² rad/s²arrow_forward
- Two steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b = 111 mm. A horizontal force of magnitude F = 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. m Answers: a = 0= IN P 77 M m/s² rad/s²arrow_forwardTwo steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b= 111 mm. A horizontal force of magnitude F= 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. m Answers: a = O = IN 7. 77 M m/s² rad/s²arrow_forwardA 20-g bullet is fired at a 5-kg square panel of side b = 300 mm. The velocity of the bullet just before the collision is 500 m/s, with = 15°, and is embedded into the plate after impact with a duration of 2.5 × 10 seconds. Knowing that the horizontal component of the impulsive reaction at A is zero, which of the following momentum-impulse diagrams represents the given situation?arrow_forward
- Urgent,please solve.arrow_forwardSlender rod LA hits block Q at end A of the rod which causes the block to move by a distance of 0.500 m before coming to a full stop. The rod has a mass of 1.300 kg and length of 1.600 m while block Q has a mass of 0.300 kg. Knowing that the coefficient of restitution during the impact is zero and the angular velocity of rod LA immediately after the impact is 0.85 rad/s counterclockwise, answer the following questions: L 1. Determine the speed of the block immediately after impact. 2. angular speed of the rod LA just before impact 3. magnitude of the acceleration of the block 4. closest to the coefficient of kinetic friction, uk, between the block and the surface A Xarrow_forwardA 10-lb collar is attached to a spring and slides without friction along a fixed rod in a vertical plane. The spring has an undeformed length of 14 in. and a constant k= 4 lb/in. Knowing that the collar is released from rest in the position shown, determine the force exerted by the rod on the collar at (a) point A, (b) point B. Both these points are on the curved portion of the rod.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY