Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.3, Problem 14.61P
A rotary power plow is used to remove snow from a level section of railroad track. The plow car is placed ahead of an engine that propels it at a constant speed of 20 km/h. The plow car clears 160 Mg of snow per minute, projecting it in the direction shown with a velocity of 12 m/s relative to the plow car. Neglecting friction, determine (a) the force exerted by the engine on the plow car. (2) the lateral force exerted by the track on the plow.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A polisher is started so that the fleece along the circumference undergoes a constant tangential acceleration of 4 m/s2 . Three seconds after it is started, small tufts of fleece from along the circumference of the 225-mm-diameter polishing pad are observed to fly free of the pad. At this instant, determine (a) the speed v of a tuft as it leaves the pad, (b ) the magnitude of the force required to free a tuft if the average mass of a tuft is 1.6 mg.
6. Exercise 2.5.32 Block A is observed to be dropping down at a steady 0.9 ft/s. At what
velocity must the free end of the pulley be moving?
L
Human centrifuges are often used to simulate different acceleration levels for pilots. When aerospace physiologists say that a pilot is pulling 9 g,s , they mean that the resultant normal force on the pilot from the bottom of the seat is nine times their weight. Knowing that the centrifuge starts from rest and has a constant angular acceleration of 1.5 RPM per second until the pilot is pulling 9 g's and then continues with a constant angular velocity, determine (a) how long it will take for the pilot to reach 9 g's (b) the angle 0 of the normal force once the pilot reaches 9 g’s. Assume that the force parallel to the seat is zero.
Chapter 14 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - An airline employee tosses two suitcases with...Ch. 14.1 - A bullet is fired with a horizontal velocity of...Ch. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9. assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - A 300-kg space vehicle traveling with a velocity...Ch. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - Car A was traveling east at high speed when it...Ch. 14.1 - Knowing that the coordinates of the utility pole...Ch. 14.1 - An expert archer demonstrates his ability by...Ch. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - In a game of pool, ball A is moving with a...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation Ho=rmv+HG between the angular...Ch. 14.1 - Show that Eq. (14.23) may be derived directly from...Ch. 14.1 - Consider the frame of reference Ax'y'z' in...Ch. 14.1 - Show that the relation MA=HA where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - Prob. 14.32PCh. 14.2 - In Prob. 14.6. determine the work done by the...Ch. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Two automobiles A and B, of mass mA and mB,...Ch. 14.2 - It is assumed that each of the two automobiles...Ch. 14.2 - Solve Sample Prob. 14.5, assuming that cart A is...Ch. 14.2 - Two hemispheres are held together by a cord which...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - Three spheres, each with a mass of m, can slide...Ch. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - The 2-kg sub-satellite B has an initial velocity...Ch. 14.2 - A 900-lb space vehicle traveling with a velocity...Ch. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Three identical small spheres, each of weight 2...Ch. 14.2 - Three small spheres A, B, C, each of mass m, are...Ch. 14.2 - In a game of billiards, ball A is given an initial...Ch. 14.2 - For the game of billiards of Prob. 14.51, it is...Ch. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.3 - A stream of water with a density of =1000kg/m3 is...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - A rotary power plow is used to remove snow from a...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - Sand falls from three hoppers onto a conveyor belt...Ch. 14.3 - The stream of water shown flows at a rate of 550...Ch. 14.3 - The nozzle shown discharges water at the rate of...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m/min...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m3/min...Ch. 14.3 - Coal is being discharged from a first conveyor...Ch. 14.3 - The total drag due to air friction on a jet...Ch. 14.3 - While cruising in level flight at a speed of 600...Ch. 14.3 - In order to shorten the distance required for...Ch. 14.3 - The helicopter shown can produce a maximum...Ch. 14.3 - Prior to takeoff, the pilot of a 3000-kg...Ch. 14.3 - The jet engine shown scoops in air at A at a rate...Ch. 14.3 - A jet airliner is cruising at a speed of 900 km/h...Ch. 14.3 - A 16-Mg jet airplane maintains a constant speed of...Ch. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - The wind turbine generator shown has an...Ch. 14.3 - A wind turbine generator system having a diameter...Ch. 14.3 - While cruising in level flight at a speed of 570...Ch. 14.3 - In a Pelton-wheel turbine, a stream of water is...Ch. 14.3 - A circular reentrant orifice (also called Borda’s...Ch. 14.3 - A railroad car with length L and mass mg when...Ch. 14.3 - The depth of water flowing in a rectangular...Ch. 14.3 - Determine the rate of flow in the channel of Prob....Ch. 14.3 - A chain of length I and mass m lies in a pile on...Ch. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - The ends of a chain lie in piles at A and C. When...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - A rocket sled bums fuel at the constant rate of...Ch. 14.3 - A space vehicle describing a circular orbit about...Ch. 14.3 - A 540-kg spacecraft is mounted on top of a rocket...Ch. 14.3 - The rocket used to launch the 540-kg spacecraft of...Ch. 14.3 - The weight of a spacecraft, including fuel, is...Ch. 14.3 - The rocket engines of a spacecraft are fired to...Ch. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb. including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - For the spacecraft and the two-stage launching...Ch. 14.3 - In a jet airplane, the kinetic energy imparted to...Ch. 14.3 - In a rocket, the kinetic energy imparted to the...Ch. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 30-g bullet is fired with a velocity of 480 m/s...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - In a game of pool, ball A is moving with a...Ch. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - A 15-lb block B is at rest and a spring of...Ch. 14 - Car A of mass 1800 kg and car B of mass 1700 kg...Ch. 14 - The nozzle shown discharges a stream of water at...Ch. 14 - An airplane with a weight W and a total wing span...Ch. 14 - The final component of a conveyor system receives...Ch. 14 - A garden sprinkler has four rotating arms, each of...Ch. 14 - A chain of length I and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- solve question completlyarrow_forwardPROBLEM 2.9 A stone was dropped freely from a balloon at a height of 250 m. above the ground. The balloon is moving upward at a speed of 40 m/s. Determine the velocity of the stone as it hits the ground. 80.65 m/s 70.65 m/s 9. с. 60.65 m/s d. 50.65 m/s а. b.arrow_forwardAn estimate of the expected load on over-the-shoulder seat belts is to be made before designing prototype belts that will be evaluated in automobile crash tests. Assuming that an automobile traveling at 45 mi/h is brought to a stop in 110 ms, determine (a) the average impulsive force exerted by a 200-lb man on the belt, (b) the maximum force Fm exerted on the belt if the force-time diagram has the shape shown.arrow_forward
- b. A cart full of water is initially at rest on a smooth (frictionless) surface. Suddenly it starts ejecting water to the left (negative x-direction) at a constant velocity relative to the cart Vw/c. a. Immediately after the cart starts ejecting water, the acceleration of the cart is i. To the right Equal to zero To the left Cannot be determined ii. iii. iv. b. After some water has left the tank, you determine the cart has absolute velocity, Vc. The absolute velocity of the water leaving the cart is i. To the left ii. iii. iv. Equal to zero To the right Cannot be determinedarrow_forwardA 16-Mg jet airplane maintains a constant speed of 774 km/h while climbing at an angle a = 18°. The airplane scoops in air at a rate of 300 kg/s and discharges it with a velocity of 665 m/s relative to the airplane. If the pilot changes to a horizontal flight while maintaining the same engine setting, determine (a) the initial acceleration of the plane, (b) the maximum horizontal speed that will be attained. Assume that the drag due to air friction is proportional to the square of the speed.arrow_forwardA 1-lb stone is dropped down the "bottomless pit at Carlsbad Caverns and strikes the ground with a speed of 95 ft/s. Neglecting air resistance, determine (a) the kinetic energy of the stone as it strikes the ground and the height h from which it was dropped, (b) Solve Part a assuming that the same stone is dropped down a hole on the moon. (Acceleration of gravity on the moon = 5.31 ft/s.)arrow_forward
- A cyclist reaches a speed of 9.1 km / h. Determine the kinetic energy produced by his legs (in Joules), knowing that he and his vehicle weigh 82.1 kg.arrow_forwardAnswer detailly 6arrow_forward) Initially at rest, A Mitsubishi Pajero and a Toyota Vios are connected by a tow cable. The winch on the back of the Pajero is turned on and pulls in the tow cable at a constant relative velocity of 2 m/s. If both the 1.25 Mg Vios and the 2.5 Mg Pajero are free to roll, determine: a. The velocities of the jeep and the car at the instant they meet. b. If the tow cable is 5 m long, how long does it take for the vehicles to meet? FE 5marrow_forward
- (14.73) The jet engine shown scoops in air at A at a rate of 90 kg/s and discharges it at B with a velocity of 600 m/s relative to the airplane. Deter- mine the magnitude and line of action of the propulsive thrust developed by the engine when the speed of the airplane is (a) 480 km/h, (b) 960 km/h. 300 "Ꮩ B 4 marrow_forwardPeople with mobility impairments can gain great health and social benefits from participating in different recreational activities. You are tasked with designing an adaptive spring-powered shuffleboard attachment that can be utilized by people who use wheelchairs. Knowing that the coefficient of kinetic friction between the 15 ounce puck A and the wooden surface is 0.3, the maximum spring displacement you desire is 6 inches, and that you want the puck to travel at least 30 ft/s, determine (a) the spring constant k, (b) how far the athlete should pull back the spring to make the puck come to rest after 34 ft.arrow_forwardDetermine the acceleration produced in a body of 20 kg mass when it is acted upon by a force of 200N. Use D’ Alembert’s principle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License