Concept explainers
A system consists of three identical 19.32-lb particles 1, B, and C. The velocities of the particles are, respectively,
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Vector Mechanics for Engineers: Dynamics
- Collision at an Angle To apply conservation of linear momentum in an inelastic collision. Two cars, both of mass m, collide and stick together. Prior to the collision, one car had been traveling north at a speed 2v, while the second was traveling in a southeastern direction at an angle ϕ with respect to the east-west direction and at a speed v. After the collision, the two-car system travels in a northeastern direction at an angle θ with respect to the north-south direction and at a speed v final. Find v final, the speed of the joined cars after the collision. Express your answer in terms of v and ϕ.arrow_forwardCollision at an Angle To apply conservation of linear momentum in an inelastic collision. Two cars, both of mass m, collide and stick together. Prior to the collision, one car had been traveling north at a speed 2v, while the second was traveling in a southeastern direction at an angle ϕ with respect to the east-west direction and at a speed v. After the collision, the two-car system travels in a northeastern direction at an angle θ with respect to the north-south direction and at a speed v final. What is the angle θ (with respect to north) made by the velocity vector of the two cars after the collision? Express your answer in terms of ϕ. Your answer should contain an inverse trigonometric function.arrow_forward4. A 3-kg ball is attached to a rope connected to the center of a table and initially travelling in a circle of constant radius 4 m with a speed of 3 m/s. The rope is then pulled inward through a hole in the center of the table with a constant speed of 1 m/s. Determine the ball's velocity and speed at the instant that its distance from the center of the table is 2 m. Also calculate the amount of work done by the rope. Neglect friction.arrow_forward
- D A block of mass M is at rest on a ramp that is inclined at an angle 0 with respect to the horizontal. Frictional forces are considered to be nonnegligible. The block is pushed against a spring and then held in place. The spring is compressed a distance of x1, and the spring is not sec after traveling a distance D, as shown above. Which of the following claims correctly describes the energy of the system under consideration from when the block compressed the spring and when the block has traveled a distance D along the incline? Select to the block. The block is then released from rest, travels up the incline, and comes to rest two answers. A The mechanical energy of the system consisting of the spring increases by kx7. The mechanical energy of the system consisting of the block does not change. The mechanical energy of the system consisting of the block and Earth increases by more than zero but less than ka?. The mechanical energy of the system consisting of the spring, block, and…arrow_forwarda 400-kg satellite was place in a circular orbit 1500 km above the surface of the earth at this elevation the acceleration of gravity is 6.43 m/s^2 determine the kinetic energy of the satellite in kJ knowing that its orbital speed is 25.6x10^3 km/harrow_forwardA system consists of three identical 14.32-lb particles A, B, and C. The velocities of the particles are, respectively, vA = vA j, vB = vBi, and vC = vCk. The angular momentum of the system about O expressed in ft·lb·s is HO = -1.2k. Determine the velocities of the particles. (You must provide an answer before moving to the next part.) The velocity of particle A is ( ft/s)j. The velocity of particle B is ( ft/s)i. The velocity of particle C is ( ft/s)k.arrow_forward
- 4. Two blocks with the same mass are connected to a compressed spring at opposite ends. At first, the spring and blocks slide at the same velocity v on a frictionless surface to the right. The spring is released and at some later instant the left block is moving at v/2 to the left and the other block is moving to the right. What the speed of the center of mass of the system at that instant? (A) 5v/2 (B) 3v/2 (C) v (D) v/2arrow_forwardTo understand how the conservation of energy and Newton's second law can be combined to solve kinetic problems. As shown, a large globe has a radius R and a frictionless surface. A small block with mass m starts sliding from rest at the top of the globe and slides along the globe’s surface. The block leaves the globe’s surface when it reaches a height hl above the ground. The system’s geometry is shown for an arbitrary height h. (Figure 1) Note that the subscripts used in this problem is the letter l and not the number 1. Consider what happens when the block leaves the globe’s surface. Which of the following statement or statements are correct? The net acceleration of the block is directed straight down. The component of the force of gravity toward the globe’s center is equal to the normal force’s magnitude. The force of gravity is the only force acting on the block.Consider what happens when the block leaves the globe’s surface. Which of the following statement or statements are…arrow_forward5. A 2-kg sphere is attached to a massless rigid rod attached to a fixed pivot point O. The rigid rod and mass rotate in the horizontal plane. A moment is applied to the rod of magnitude M = 0.5t² N. m, where t is in seconds. The length of the rod is 0.5 m. Determine the speed of the sphere after the moment is applied for 5 seconds. M(t)arrow_forward
- A 4-lb collar which can slide on a frictionless vertical rod is acted upon by a force P which varies in magnitude as shown. Knowing that the collar is initially at rest, draw the impulse-momentum diagram that can be used to determine its velocity at t= 3 s.arrow_forwardA system consists of three identical 5-kg particles A, B, and C. Their position vectors (in meter) and velocity vectors (in m/s) are rA 0,0, 3 , v A v Aj , rB 2,2, 3 , vB v B i , and rC 1,4, 0 , vC v C k, respectively. Knowing that the angular momentum of the system about point O is HO 1.5k kg m 2s, determine (a) the velocities of the particles, (b) the angular momentum of the system about its center of mass G.arrow_forwardA 40 g golf ball is hit over a time interval 3 ms by a driver. The ball leaves with a velocity of 35 m/s, at an angle of 40°. Neglect the ball's weight while it is struck. What is the average impulsive force exerted on the ball and the momentum of it 1 s after it leaves the club face. A. (467 N, 1.18 kgm/s) B. (460 N, 1.22 kgm/s) C. (450 N, 1.10 kgm/s) D. (435 N, 1.02 kgm/s) E. (388 N, 0.98 kgm/s) Lütfen birini seçin: ASUS Model No: F4 F5 F6 EZ F8 F9 F10 F11 F12 Paus Brec & %23 24 5 1/2 8 } T Y F G H. C V. M Alt Grarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY