Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.2, Problem 14.45P
The 2-kg sub-satellite B has an initial velocity
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 245-kg glider Bis being towed by airplane A, which is flying horizontally with a constant speed of v = 183 km/h. The tow cable has
a length r = 59 m and may be assumed to form a straight line. The glider is gaining altitude and when e reaches 14°, the angle is
increasing at the constant rate 0 = 8 deg/s. At the same time the tension in the tow cable is 2370 N for this position. Calculate the
aerodynamic lift L and drag D acting on the glider.
Assume o = 10°.
D
B
A
The 150-kg glider B is being towed by airplane A, which is flying horizontally with a constant speed of v = 218 km/h. The tow cable has
a length r = 51 m and may be assumed to form a straight line. The glider is gaining altitude and when e reaches 16°, the angle is
increasing at the constant rate ở = 3 deg/s. At the same time the tension in the tow cable is 1235 N for this position. Calculate the
aerodynamic lift L and drag D acting on the glider.
Assume o = 11°.
B
A
Part 1
Calculate the magnitude of the acceleration of glider B.
Answer: a = i
m/s?
Attempts: 0 of 1 used Submit Answer
Save for Later
Part 2
The parts of this question must be completed in order. This part will be available when you complete the part above.
The 15-Mg boxcar A is coasting freely at 1.5 m/s on the horizontal track when it encounters a tank car B
having a mass of 12 Mg and coasting at 0.75 m/s toward it as shown in the figure. If the cars meet and
couple together, determine the average force between them if the coupling takes place in 0.8s.
15 m/s
0.75 m/s
O 18.8 KN
O 6.2 KN
o 24.4 KN
O36.9 KN
Chapter 14 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - An airline employee tosses two suitcases with...Ch. 14.1 - A bullet is fired with a horizontal velocity of...Ch. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9. assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - A 300-kg space vehicle traveling with a velocity...Ch. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - Car A was traveling east at high speed when it...Ch. 14.1 - Knowing that the coordinates of the utility pole...Ch. 14.1 - An expert archer demonstrates his ability by...Ch. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - In a game of pool, ball A is moving with a...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation Ho=rmv+HG between the angular...Ch. 14.1 - Show that Eq. (14.23) may be derived directly from...Ch. 14.1 - Consider the frame of reference Ax'y'z' in...Ch. 14.1 - Show that the relation MA=HA where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - Prob. 14.32PCh. 14.2 - In Prob. 14.6. determine the work done by the...Ch. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Two automobiles A and B, of mass mA and mB,...Ch. 14.2 - It is assumed that each of the two automobiles...Ch. 14.2 - Solve Sample Prob. 14.5, assuming that cart A is...Ch. 14.2 - Two hemispheres are held together by a cord which...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - Three spheres, each with a mass of m, can slide...Ch. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - The 2-kg sub-satellite B has an initial velocity...Ch. 14.2 - A 900-lb space vehicle traveling with a velocity...Ch. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Three identical small spheres, each of weight 2...Ch. 14.2 - Three small spheres A, B, C, each of mass m, are...Ch. 14.2 - In a game of billiards, ball A is given an initial...Ch. 14.2 - For the game of billiards of Prob. 14.51, it is...Ch. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.3 - A stream of water with a density of =1000kg/m3 is...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - A rotary power plow is used to remove snow from a...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - Sand falls from three hoppers onto a conveyor belt...Ch. 14.3 - The stream of water shown flows at a rate of 550...Ch. 14.3 - The nozzle shown discharges water at the rate of...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m/min...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m3/min...Ch. 14.3 - Coal is being discharged from a first conveyor...Ch. 14.3 - The total drag due to air friction on a jet...Ch. 14.3 - While cruising in level flight at a speed of 600...Ch. 14.3 - In order to shorten the distance required for...Ch. 14.3 - The helicopter shown can produce a maximum...Ch. 14.3 - Prior to takeoff, the pilot of a 3000-kg...Ch. 14.3 - The jet engine shown scoops in air at A at a rate...Ch. 14.3 - A jet airliner is cruising at a speed of 900 km/h...Ch. 14.3 - A 16-Mg jet airplane maintains a constant speed of...Ch. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - The wind turbine generator shown has an...Ch. 14.3 - A wind turbine generator system having a diameter...Ch. 14.3 - While cruising in level flight at a speed of 570...Ch. 14.3 - In a Pelton-wheel turbine, a stream of water is...Ch. 14.3 - A circular reentrant orifice (also called Borda’s...Ch. 14.3 - A railroad car with length L and mass mg when...Ch. 14.3 - The depth of water flowing in a rectangular...Ch. 14.3 - Determine the rate of flow in the channel of Prob....Ch. 14.3 - A chain of length I and mass m lies in a pile on...Ch. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - The ends of a chain lie in piles at A and C. When...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - A rocket sled bums fuel at the constant rate of...Ch. 14.3 - A space vehicle describing a circular orbit about...Ch. 14.3 - A 540-kg spacecraft is mounted on top of a rocket...Ch. 14.3 - The rocket used to launch the 540-kg spacecraft of...Ch. 14.3 - The weight of a spacecraft, including fuel, is...Ch. 14.3 - The rocket engines of a spacecraft are fired to...Ch. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb. including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - For the spacecraft and the two-stage launching...Ch. 14.3 - In a jet airplane, the kinetic energy imparted to...Ch. 14.3 - In a rocket, the kinetic energy imparted to the...Ch. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 30-g bullet is fired with a velocity of 480 m/s...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - In a game of pool, ball A is moving with a...Ch. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - A 15-lb block B is at rest and a spring of...Ch. 14 - Car A of mass 1800 kg and car B of mass 1700 kg...Ch. 14 - The nozzle shown discharges a stream of water at...Ch. 14 - An airplane with a weight W and a total wing span...Ch. 14 - The final component of a conveyor system receives...Ch. 14 - A garden sprinkler has four rotating arms, each of...Ch. 14 - A chain of length I and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 0.75-kg bob of a pendulum is fired from rest at position A by a spring which has a stiffness k= 6 kN/m and is compressed 125 mm. Determine the speed of the bob and the tension in thecord when the bob is at positions B and C. Point B is located on the path where the radius ofcurvature is still 0.6 m, i.e., just before the cord becomes horizontalarrow_forwardThe 10-kg block is subjected to the forces shown. In each case, determine its velocity when t = 2 s if v = 0 whent = 0. %3D %3D 500 N 300 N (a) F = (201) N (b)arrow_forwardThe 150-kg glider B is being towed by airplane A, which is flying horizontally with a constant speed of v = 218 km/h. The tow cable has a length r = 51 m and may be assumed to form a straight line. The glider is gaining altitude and when θ reaches 16°, the angle is increasing at the constant rate = 3 deg/s. At the same time the tension in the tow cable is 1235 N for this position. Calculate the ff: a. the magnitude of the acceleration of glider B. b. aerodynamic lift L and drag D acting on the glider.arrow_forward
- It takes 33 s for the 48-Mg tugboat to increase its speed uniformly to 25 km/h, starting from rest. The propeller provides the propulsion force F which gives the tugboat forward motion, whereas the barge moves freely. The barge has a mass of 80 Mg.arrow_forwardThe 2-lb collar starts from rest at A and is lifted by applying a constant vertical force F to the cord. The rod is smooth. h=9-ft. 3 ft В h F A Determine the Force required for the collar speed to be 5 ft.s at B ofarrow_forwardQuestion 1: The 40-kg crate is being hoisted by the motor. If at this instant shown the velocity of point P on the cable is 4 m/s and the speed is increasing at 2 m/s?, what is the power input supplied to the motor if its efficiency is &=0.75? Neglect the mass of pulley and cable. P (а) 0.649 kW (b) 0.865 kW (c) 1.15 kW (d) 1.53 kW Vp= 4 m/s Aarrow_forward
- Q6: The 7-kg collar A slides with negligible friction Q8: The 1.5-kg ball is given an initial velocity va = 2.5m/s in the vertical plane at position A, where the two horizontal attached springs are unstretched. The ball follows the dashed path shown and crosses point B, which is 125 mm. directly below A. Calculate the velocity vg of the ball at B. Each spring has a stiffness of 1800 N/m. on the fixed vertical shaft. When the collar is released from rest at the bottom position shown, it moves up the shaft under the action of the constant force F = 200N applied to the cable. Calculate the stiffness k which the spring must have if its maximum compression is to be limited to 75 mm. The position of the small pulley at B is fixed. [ Ans.: k = 8.79 kN/m] [ Ans.: vg = 8.54 ft/s] 225 mm 300mm 300mm 125mm 450 mm 75 mm Q7: Determine the constant force P required to cause the 0.5-kg slider to have a speed v, = 0.8 m/s at position 2. The slider starts from rest at position 1 and the spring has…arrow_forwardThe cars of a roller-coaster ride have a speed of 30km/h as they pass over the top of the circular track neglect any friction and calculate their speed v when they reach the horizontal bottom position. At the top position, the radius of the circular path of their mass centres is 18m, and all six cars have the same mass. Also draw FBD.arrow_forwardH.W Two identical 10-kg spheres are attached to the light rigid rod, which rotates in the horizontal planc centered at pin O. If the spheres are subjected to tangential forces of P = 10 N, and the rod is subjected to a couple moment M (8t) N- m, where t is in seconds, determine the speed of the spheres at the instant 4 s. The system starts from rest. Neglect the size of the spheres. P = 10 N %3D 05m 0.5 m- M = (80) N-m P = 10 N v = 10.4 m/s Ans.arrow_forward
- The spring of constant k is unstretched when the slider of mass m passes position B. If the slider is released from rest in position A, determine its speeds as it passes points B and C. What is the nor- mal force exerted by the guide on the slider at posi- tion C? Neglect friction between the mass and the circular guide, which lies in a vertical plane. R ww R C m Barrow_forwardThe 195-g slider has a speed v = 1.9 m/s as it passes point A of the smooth guide, which lies in a horizontal plane. Determine the magnitude R of the force which the guide exerts on the slider (a) just before it passes point A of the guide and (b) as it passes point B. Answers: (a) RA= (b) RB i i 225 mm B N Narrow_forwardThe 2-kg block B and 15-kg cylinder A are connected to a light cord that passes through a hole in the center of the smooth table. If the block is given a speed of v = 10 m/s, determine the radius r of the circular path along which it travels.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY