Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 14.111RP
Car A of mass 1800 kg and car B of mass 1700 kg are at rest on a 20-Mg flatcar which is also at rest. Cars A and B then accelerate and quickly reach constant speeds relative to the flatcar of 2.35 m/s and 1.175 m/s, respectively, before decelerating to a stop at the opposite end of the flatcar. Neglecting friction and rolling resistance, determine the velocity of the flatcar when the cars are moving at constant speeds.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A constant force of F acts on a mass as shown. The mass starts its motion from rest at position 1, the unstretched lenght of the spring is 250 mm, and the spring modulus is k = 1.5 kN/m. Neglecting the friction, determine the required force F to cause the 2 - kg mass to have a speed of v2 = 1.5 m/s at position 2.
A constant force of ''F'' acts on a mass as shown. The mass starts its motion from rest at position 1, the unstretched length of the spring is 250 mm, and the spring modulus is k=1,5 k?/m. Neglecting the friction, determine the required force ''F'' to cause the 2−kg mass to have a speed of v2=1,5 m/s at position 2.
The parabolic guide wire shown below is smooth and lies in a vertical plane. A 0.6 kg mass slider
is released from rest at point A. The spring has an unstretched length of 200 mm and a spring
constant of 120 N/m. Determine the speed of the slider when it reaches point B and the force
exerted by the wire.
0.5 m
0.5 m
A
0.6 kg
120 N/m
0.25 m
0.25 m
Parabolic
В
Chapter 14 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - An airline employee tosses two suitcases with...Ch. 14.1 - A bullet is fired with a horizontal velocity of...Ch. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9. assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - A 300-kg space vehicle traveling with a velocity...Ch. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - Car A was traveling east at high speed when it...Ch. 14.1 - Knowing that the coordinates of the utility pole...Ch. 14.1 - An expert archer demonstrates his ability by...Ch. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - In a game of pool, ball A is moving with a...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation Ho=rmv+HG between the angular...Ch. 14.1 - Show that Eq. (14.23) may be derived directly from...Ch. 14.1 - Consider the frame of reference Ax'y'z' in...Ch. 14.1 - Show that the relation MA=HA where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - Prob. 14.32PCh. 14.2 - In Prob. 14.6. determine the work done by the...Ch. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Two automobiles A and B, of mass mA and mB,...Ch. 14.2 - It is assumed that each of the two automobiles...Ch. 14.2 - Solve Sample Prob. 14.5, assuming that cart A is...Ch. 14.2 - Two hemispheres are held together by a cord which...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - Three spheres, each with a mass of m, can slide...Ch. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - The 2-kg sub-satellite B has an initial velocity...Ch. 14.2 - A 900-lb space vehicle traveling with a velocity...Ch. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Three identical small spheres, each of weight 2...Ch. 14.2 - Three small spheres A, B, C, each of mass m, are...Ch. 14.2 - In a game of billiards, ball A is given an initial...Ch. 14.2 - For the game of billiards of Prob. 14.51, it is...Ch. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.3 - A stream of water with a density of =1000kg/m3 is...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - A rotary power plow is used to remove snow from a...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - Sand falls from three hoppers onto a conveyor belt...Ch. 14.3 - The stream of water shown flows at a rate of 550...Ch. 14.3 - The nozzle shown discharges water at the rate of...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m/min...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m3/min...Ch. 14.3 - Coal is being discharged from a first conveyor...Ch. 14.3 - The total drag due to air friction on a jet...Ch. 14.3 - While cruising in level flight at a speed of 600...Ch. 14.3 - In order to shorten the distance required for...Ch. 14.3 - The helicopter shown can produce a maximum...Ch. 14.3 - Prior to takeoff, the pilot of a 3000-kg...Ch. 14.3 - The jet engine shown scoops in air at A at a rate...Ch. 14.3 - A jet airliner is cruising at a speed of 900 km/h...Ch. 14.3 - A 16-Mg jet airplane maintains a constant speed of...Ch. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - The wind turbine generator shown has an...Ch. 14.3 - A wind turbine generator system having a diameter...Ch. 14.3 - While cruising in level flight at a speed of 570...Ch. 14.3 - In a Pelton-wheel turbine, a stream of water is...Ch. 14.3 - A circular reentrant orifice (also called Borda’s...Ch. 14.3 - A railroad car with length L and mass mg when...Ch. 14.3 - The depth of water flowing in a rectangular...Ch. 14.3 - Determine the rate of flow in the channel of Prob....Ch. 14.3 - A chain of length I and mass m lies in a pile on...Ch. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - The ends of a chain lie in piles at A and C. When...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - A rocket sled bums fuel at the constant rate of...Ch. 14.3 - A space vehicle describing a circular orbit about...Ch. 14.3 - A 540-kg spacecraft is mounted on top of a rocket...Ch. 14.3 - The rocket used to launch the 540-kg spacecraft of...Ch. 14.3 - The weight of a spacecraft, including fuel, is...Ch. 14.3 - The rocket engines of a spacecraft are fired to...Ch. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb. including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - For the spacecraft and the two-stage launching...Ch. 14.3 - In a jet airplane, the kinetic energy imparted to...Ch. 14.3 - In a rocket, the kinetic energy imparted to the...Ch. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 30-g bullet is fired with a velocity of 480 m/s...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - In a game of pool, ball A is moving with a...Ch. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - A 15-lb block B is at rest and a spring of...Ch. 14 - Car A of mass 1800 kg and car B of mass 1700 kg...Ch. 14 - The nozzle shown discharges a stream of water at...Ch. 14 - An airplane with a weight W and a total wing span...Ch. 14 - The final component of a conveyor system receives...Ch. 14 - A garden sprinkler has four rotating arms, each of...Ch. 14 - A chain of length I and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The platform swing consists of a 190-lb flat plate suspended by four rods of negligible weight. When the swing is at rest, the 170-lb man jumps off the platform when his center of gravity G is 10 ft from the pin at A. This is done with a horizontal velocity of 5 ft/s, measured relative to the swing at the level of G. (Eigure 1) Figure 1 of 1 10 ft 11 ft 4 ftarrow_forwardThe 1400 kg car is starting from rest with a constant acceleration, and after 20 s reaches a speed of 40 km/h. The front wheels are free to roll. Neglect the mass of the wheels and calculate: 1. The normal reactions at each of the four wheels on the road 2. The friction force under the rear driving wheels B.arrow_forwarddynamicarrow_forward
- Solve the following exercise in two different ways: 1) Using the principle of Work and Energy. 2) Using Newton's Second Law. Compare the results obtained, and explain any possible differences. The 300-lb car has an initial speed of 9 ft/s at point A as shown in the figure, after which a force of 110 lb is applied to the end of the pulley. Determine the speed of the cart at point B. 110 lb UA =9 ft/sec 300 lb 10 B 5n A 12arrow_forward1. A 20-lb collar slides without frictions along a vertical rod as shown. The elastic rope attached to the collar has an undeformed length of 4 inches and spring constant of 3 lb/in. If the collar is released from rest in position A, determine its velocity at position B. Apply conservation of energy. 8 in 6 in B 2. The 200 gram toy car will be compressed against the spring and released to send it around the loop which has diameter of 60 cm. Determine minimum reauired spring compression to maintain contact with the tack for the entirearrow_forwardThe overworked Amazon delivery person is driving up a steep hill with an incline of 26° when a box they forgot to secure starts sliding toward the back of the truck. The 3.5 kg box starts from rest near the drivers seat and slides 2.1 m along the floor to the rear door. The coefficient of kinetic friction between the box and the floor is 0.36. What is the work done by the weight of the box? Wmg What is the work done by the Normal Force? WN What is the work done by the frictional force? Wf = = = J What is the net work done on the box? Wnet = What the change in kinetic energy for the box? AKE = How fast is the box moving just before it hits the rear door? Vfinal = Sarrow_forward
- . A device called air-track glider has a mass of 150gm is attached to the end of a horizontal air-track by a spring with a force constant 20N/m as shown below. Initially the spring is unstretched and the glider is moving at 3.50m/s to the right. Find the maximum distance d that the glider moves to the right, if the air is turned off, so that there is kinetic friction with coeficient He=0.40 gliderarrow_forwardIn the position shown, block A is moving to the left at a speed of 6 m/s, and the spring is not deformed. Determinate the stiffness of the k-spring, in N/m, which would cause the system to stop after A has shifted 0.8 m. The kinetic friction coefficient between block A and the horizontal surface is 0.25, and the weights of the pulleys are negligible. The mass of block A is 2.6 kg, and the mass of block B is 6.0 kg. VA k 0000000000 A fk Barrow_forwardThe double pulley shown in the figure is formed by two wheels that are coupled to each other. The complete pulley (formed by the two wheels) has a mass of 15 kg and a turning radius of 110mm. Block A has a mass of 40 kg. If a force of 2 kN is applied to the tied rope of the inner pulley wheel, determine the speed of block A after 3 seconds. At the beginning, the whole system was at rest. Disregard the mass of the string and consider that the moment of inertia (kg.m²) of the complete pulley is given by IP = mko²where m is the mass of the pulley and Ko is the radiusspinningarrow_forward
- A 2404 lb car is moving up a 7 degree incline as shown. Determine how many seconds will it take for the car to decelerate from 105 ft/s to 35ft/s, if the braking force is equal to 52 lb assuming that deceleration is constant and frictional effects are neglected.arrow_forward4. A 3-kg ball is attached to a rope connected to the center of a table and initially travelling in a circle of constant radius 4 m with a speed of 3 m/s. The rope is then pulled inward through a hole in the center of the table with a constant speed of 1 m/s. Determine the ball's velocity and speed at the instant that its distance from the center of the table is 2 m. Also calculate the amount of work done by the rope. Neglect friction.arrow_forwardA robot arm moves in the vertical plane so that the 0.14-kg cylinder P travels in a circle about point B, which is not moving. Know that arm BP starts from rest in a horizontal position and that the speed of Pincreases at a constant rate of 200 mm/s². 0.8 m Draw the free-body diagram of the cylinder P that is required to determine the force acting on the cylinder. (You must provide an answer before moving on to the next part.) 0.8 m P 1 Iarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY