Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14.3, Problem 14.65P
The nozzle shown discharges water at the rate of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The nozzle shown discharges water at the rate of 200 gal/min. Knowing that at both B and C the stream of water moves with a velocity of magnitude 100 ft/s, and neglecting the weight of the vane, determine the force-couple system that must be applied at A to hold the vane in place (1 ft3 = 7.48 gal).
Coal is being discharged from a first conveyor belt at the rate of 120 kg/s. It is received at A by a second belt that discharges it again at B. Knowing that v1 = 3 m/s and v2 = 4.25 m/s and that the second belt assembly and the coal it supports have a total mass of 472 kg, determine the components of the reactions at C and D.
A stream of water flowing at a rate of 1.2 m3/min and moving with a speed of 30 m/s at both A and B is deflected by a vane welded to a hinged plate. Knowing that the combined mass of the vane and plate is 20 kg with the mass center at point G , determine (a) the angle 0, (b) the reaction at C.
Chapter 14 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - An airline employee tosses two suitcases with...Ch. 14.1 - A bullet is fired with a horizontal velocity of...Ch. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9. assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - A 300-kg space vehicle traveling with a velocity...Ch. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - Car A was traveling east at high speed when it...Ch. 14.1 - Knowing that the coordinates of the utility pole...Ch. 14.1 - An expert archer demonstrates his ability by...Ch. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - In a game of pool, ball A is moving with a...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation Ho=rmv+HG between the angular...Ch. 14.1 - Show that Eq. (14.23) may be derived directly from...Ch. 14.1 - Consider the frame of reference Ax'y'z' in...Ch. 14.1 - Show that the relation MA=HA where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - Prob. 14.32PCh. 14.2 - In Prob. 14.6. determine the work done by the...Ch. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Two automobiles A and B, of mass mA and mB,...Ch. 14.2 - It is assumed that each of the two automobiles...Ch. 14.2 - Solve Sample Prob. 14.5, assuming that cart A is...Ch. 14.2 - Two hemispheres are held together by a cord which...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - Three spheres, each with a mass of m, can slide...Ch. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - The 2-kg sub-satellite B has an initial velocity...Ch. 14.2 - A 900-lb space vehicle traveling with a velocity...Ch. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Three identical small spheres, each of weight 2...Ch. 14.2 - Three small spheres A, B, C, each of mass m, are...Ch. 14.2 - In a game of billiards, ball A is given an initial...Ch. 14.2 - For the game of billiards of Prob. 14.51, it is...Ch. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.3 - A stream of water with a density of =1000kg/m3 is...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - The nozzle shown discharges a stream of water at a...Ch. 14.3 - A rotary power plow is used to remove snow from a...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - Sand falls from three hoppers onto a conveyor belt...Ch. 14.3 - The stream of water shown flows at a rate of 550...Ch. 14.3 - The nozzle shown discharges water at the rate of...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m/min...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m3/min...Ch. 14.3 - Coal is being discharged from a first conveyor...Ch. 14.3 - The total drag due to air friction on a jet...Ch. 14.3 - While cruising in level flight at a speed of 600...Ch. 14.3 - In order to shorten the distance required for...Ch. 14.3 - The helicopter shown can produce a maximum...Ch. 14.3 - Prior to takeoff, the pilot of a 3000-kg...Ch. 14.3 - The jet engine shown scoops in air at A at a rate...Ch. 14.3 - A jet airliner is cruising at a speed of 900 km/h...Ch. 14.3 - A 16-Mg jet airplane maintains a constant speed of...Ch. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - The wind turbine generator shown has an...Ch. 14.3 - A wind turbine generator system having a diameter...Ch. 14.3 - While cruising in level flight at a speed of 570...Ch. 14.3 - In a Pelton-wheel turbine, a stream of water is...Ch. 14.3 - A circular reentrant orifice (also called Borda’s...Ch. 14.3 - A railroad car with length L and mass mg when...Ch. 14.3 - The depth of water flowing in a rectangular...Ch. 14.3 - Determine the rate of flow in the channel of Prob....Ch. 14.3 - A chain of length I and mass m lies in a pile on...Ch. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - The ends of a chain lie in piles at A and C. When...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - The main propulsion system of a space shuttle...Ch. 14.3 - A rocket sled bums fuel at the constant rate of...Ch. 14.3 - A space vehicle describing a circular orbit about...Ch. 14.3 - A 540-kg spacecraft is mounted on top of a rocket...Ch. 14.3 - The rocket used to launch the 540-kg spacecraft of...Ch. 14.3 - The weight of a spacecraft, including fuel, is...Ch. 14.3 - The rocket engines of a spacecraft are fired to...Ch. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb. including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - For the spacecraft and the two-stage launching...Ch. 14.3 - In a jet airplane, the kinetic energy imparted to...Ch. 14.3 - In a rocket, the kinetic energy imparted to the...Ch. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 30-g bullet is fired with a velocity of 480 m/s...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - In a game of pool, ball A is moving with a...Ch. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - A 15-lb block B is at rest and a spring of...Ch. 14 - Car A of mass 1800 kg and car B of mass 1700 kg...Ch. 14 - The nozzle shown discharges a stream of water at...Ch. 14 - An airplane with a weight W and a total wing span...Ch. 14 - The final component of a conveyor system receives...Ch. 14 - A garden sprinkler has four rotating arms, each of...Ch. 14 - A chain of length I and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A pump draws water from a reservoir A and lifts it to reservoir B. The loss of head from A to point 1 is 3 times the velocity head in the 150 mm pipe and the loss of head from point 2 to B is 25 times the velocity head in the 100 mm pipe. When reservoir A is a starting point at elevation 0 and connected to point 1, where point 1 is also connected with a pump and point 2 is at elevation 20 m. which is connected with a pump that travels to reservoir B at elevation of 240 m. The discharge is 25 liters/sec, compute the pressure head at point 1. a. 268 m b. 134 m c. 19.74 m d. 39.48 marrow_forwardThe valve of a cylinder containing 15 kg of compressed gas is opened and the cylinder empties in 1min 20s. If the force exerted on the cylinder 4.0 N, show that the force required to accelerate the gas out of the cylinder is equal to (the change in momentum ) divided by ( the time taken) Find (i) the average velocity at which the gas issues from the exit nozzle of the cylinder (ii) the change in momentum of the gasarrow_forward3. A merry-go-round with radius R rotates in a horizontal plane at constant angular speed o. A boy with mass M at the edge begins to walk in a straight line relative to the merry-go-round from A to B with speed vo relative to the merry-go-round. Determine the magnitude of the force acting on the boy in terms of the quantities given.arrow_forward
- Q2) The slotted arm pivots about O and maintains the relation between the motions of sliders A and B and their control rods. Each small pivoted block is pinned to its respective slider and is constrained to slide in its rotating slot. Show that the displacement x is proportional to the reciprocal of y. Then estab- lish the relation between the velocities vA and vg. Also, if v, is constant for a short interval of motion, determine the acceleration of B. b y 'Barrow_forwardIn order to shorten the distance required for landing, a jet airplane is equipped with movable vanes that partially reverse the direction of the air discharged by each of its engines. Each engine scoops in the air at a rate of 120 kg/s and discharges it with a velocity of 600 m/s relative to the engine. At an instant when the speed of the airplane is 270 km/h, determine the reverse thrust provided by each of the engines.arrow_forwardIn a governor of the Hartnell type the arms of the bell-crank leversare equal in length, and those carrying the operating masses arevertical when the governor is rotating at its mean speed of 775rev/min, with the masses moving in a circle of 175 mm diameter -The usual central controlling spring is replaced by two paralleltension springs direetly connecting the operating masses. Find(a) the magnitude of each operating mass if a force of 90 N isrequired at the sleeve to maintain it in the mean speed positionwhen the specd is increased from 775 to 800 rev/m in(b) the stiffness, or rate, of each spring if the ratio of sleevemovement to increase of speed is 1 mm to 10 revImin when inthe mean speed position.arrow_forward
- A piston of mass m and cross-sectional area A is in equilibrium under the pressure p at the center of a cylinder closed at both ends. Assuming that the piston is moved to the left a distance a 2 and released, and knowing that the pressure on each side of the piston varies inversely with the volume, determine the velocity of the piston as it again reaches the center of the cylinder. Neglect friction between the piston and the cylinder and express your answer in terms of m, a, P and A.arrow_forward3. Jet engines on the 100 Mg VTOL aircraft exert a constant vertical force of 981 kN as it hovers. Determine the net impulse on the aircraft over t = 10 s. a. -981 kN-s b. 0 kN's c. 981 kN's d. 9810 kN-s ↑ F = 981 KNarrow_forwardQ4. As shown in the image below, the freight cars A and B are approaching each other, and they have a mass of mA = 23 Mg and mB = 15 Mg, respectively. The directions of their initial velocities are shown in the image, and the speeds are VÃ,1 · 2.5 m/s and VB,1 = 2.1 m/s. If the two cars collide and get stuck together, then move with the same velocity, determine their common velocity after the collision. Right is considered the positive direction and negative sign must be included if they move to the left after the collision. Please pay attention: the numbers may change since they are randomized. Your answer must include 3 places after the decimal point, and proper Sl unit. A Your Answer: VA,1 Answer units B VB.1arrow_forward
- Pr4. Two bodies are launched at the same time from two points A and B located at the same height. The distance between points A and B is d. One of the bodies starts from point A upwards with speed v1, while the other starts from point B towards point A with initial speed v2. What will be the minimal distance between the bodies during their motion? (The gravitational acceleration is g, neglect the air drag. The bodies do not reach the ground before the moment of the minimal distance.)arrow_forwardA section of track for a roller coaster consists of two circular arcs AB and CD joined by a straight portion BC. The radius of AB is 27 m and the radius of CD is 72 m. The car and its occupants, of total mass 263 kg, reach point A with practically no velocity and then drop freely along the track. Determine the maximum and minimum values of the normal force exerted by the track on the car as the car travels from A to D. Ignore air resistance and rolling resistance. 27 m 18 m r=72m The minimum normal force exerted by the track is The maximum normal force exerted by the track is [ 6955 N. 6955 Narrow_forwardA man holds and drops the two equal masses without moving his arm’s length on a rotating table then the angular velocity isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License