I submitted the below question and received the answer i copied into this question as well. Im unsure if it is correct, so looking for a checkover. i am stuck on the part tan-1 (0.05) = 0.04996 radians. Just unsure where the value for the radians came from. Just need to know how they got that answer and how it is correct before moving on to the next part. If any of the below information is wrong, please feel free to give me a new answer or an entire new explanation.   An Inclining experiment done on a ship thats 6500 t, a mass of 30t was moved 6.0 m transvesly causing a 30 cm deflection in a 6m pendulum, calculate the transverse meta centre height.    Here is the step-by-step explanation:   Given: Displacement of the ship (W) = 6500 tonnes = 6500×1000=6,500,000kg Mass moved transversely (w) = 30 tonnes=30×1000=30,000kg The transverse shift of mass (d) = 6.0 meters Pendulum length (L) = 6.0 meters Pendulum deflection (x) = 30 cm = 0.30 meters Step 1: Formula for Metacentric Height (GM):​ The metacentric height (GM) can be calculated using the following formula derived from the inclining experiment: GM=W⋅θw⋅d​​ Here: (w)= mass moved transversely (d) = transverse distance moved (W) = total displacement of the ship (θ)= heel angle, which we can approximate using the pendulum deflection.   Step 2: Calculate the Heel Angle (θ):​ The pendulum deflection (x) gives us the heel angle (θ) using the formula: tanθ=Lx​​ Here: x = pendulum deflection (in meters) L = length of the pendulum (in meters) Substitute the values: tanθ=6.00.30​=0.05 θ=tan−1(0.5) θ≈0.04996radians     Step 3: Calculate the Metacentric Height (GM):​ We have: GM=W⋅θw⋅d​​ Substitute the values: GM=6500000Kg×0.04996radians30000Kg×6.0m​ GM≈0.5543m So, the transverse metacentric height (GM) is approximately0.5543 meters​     Explanation: The metacentric height (GM) is a measure of the ship's initial stability. A larger GM indicates better stability, as it means the ship will return to an upright position more quickly if tilted. In this case, GM = 0.5543 meters means the ship has a moderate transverse metacentric height, which is indicative of stability under transverse tilting forces. This result is important for understanding how the ship will behave when subjected to tilting forces, like waves or shifts in cargo.   arrow_forward Solution Final answer: The transverse metacentric height (GM) is approximately0.5543 m​

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

I submitted the below question and received the answer i copied into this question as well. Im unsure if it is correct, so looking for a checkover. i am stuck on the part tan-1 (0.05) = 0.04996 radians. Just unsure where the value for the radians came from. Just need to know how they got that answer and how it is correct before moving on to the next part. If any of the below information is wrong, please feel free to give me a new answer or an entire new explanation.

 

An Inclining experiment done on a ship thats 6500 t, a mass of 30t was moved 6.0 m transvesly causing a 30 cm deflection in a 6m pendulum, calculate the transverse meta centre height. 

 

Here is the step-by-step explanation:

 

Given:

  1. Displacement of the ship (W) = 6500 tonnes = 6500×1000=6,500,000kg
  2. Mass moved transversely (w) = 30 tonnes=30×1000=30,000kg
  3. The transverse shift of mass (d) = 6.0 meters
  4. Pendulum length (L) = 6.0 meters
  5. Pendulum deflection (x) = 30 cm = 0.30 meters

Step 1: Formula for Metacentric Height (GM):​

The metacentric height (GM) can be calculated using the following formula derived from the inclining experiment:

GM=W⋅θw⋅d​​

Here:

  1. (w)= mass moved transversely
  2. (d) = transverse distance moved
  3. (W) = total displacement of the ship
  4. (θ)= heel angle, which we can approximate using the pendulum deflection.

 

Step 2: Calculate the Heel Angle (θ):​

The pendulum deflection (x) gives us the heel angle (θ) using the formula:

tanθ=Lx​​

Here:

  1. x = pendulum deflection (in meters)
  2. L = length of the pendulum (in meters)

Substitute the values:

tanθ=6.00.30​=0.05

θ=tan−1(0.5)

θ≈0.04996radians

 

 

Step 3: Calculate the Metacentric Height (GM):​

We have:

GM=W⋅θw⋅d​​

Substitute the values:

GM=6500000Kg×0.04996radians30000Kg×6.0m​

GM≈0.5543m

So, the transverse metacentric height (GM) is approximately0.5543 meters​

 

 

Explanation:

  • The metacentric height (GM) is a measure of the ship's initial stability. A larger GM indicates better stability, as it means the ship will return to an upright position more quickly if tilted.
  • In this case, GM = 0.5543 meters means the ship has a moderate transverse metacentric height, which is indicative of stability under transverse tilting forces.

This result is important for understanding how the ship will behave when subjected to tilting forces, like waves or shifts in cargo.

 
arrow_forward
Solution

Final answer:

  • The transverse metacentric height (GM) is approximately0.5543 m​

 

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY