Quantum numbers for all electrons in boron atom and nitrogen atom should be identified. Concept introduction: Energy, size, shape, and orientation of atomic orbital are determined with help of some numbers. These numbers are called quantum numbers and are obtained from solution of Schrodinger equation of hydrogen atom by application of boundary conditions. Below mentioned are four quantum numbers. 1. Principal Quantum Number It is represented by n . This quantum number is related to size and energy of different atomic orbitals. With increase in value of n , size of orbital becomes larger and electron is present farther from atomic nucleus for longer time. 2. Angular Momentum Quantum Number It is represented by l . It describes angular momentum of electron in any specific atomic orbital. Shape of orbitals is determined by this quantum number. It can have integral values from 0 to ( n − 1 ) . Designation of orbitals on basis of different l values is as follows: Value of l 0 1 2 3 Orbital s p d f 3. Magnetic Quantum Number This quantum number is denoted by m l . It describes orientation of angular momentum associated with atomic orbital. Its value ranges from − l to + l . Total values of magnetic quantum number is governed by 2 l + 1 4. Spin Quantum Number This quantum number is represented by m s . It indicates direction of electron spin. It can either + 1 2 or − 1 2 .
Quantum numbers for all electrons in boron atom and nitrogen atom should be identified. Concept introduction: Energy, size, shape, and orientation of atomic orbital are determined with help of some numbers. These numbers are called quantum numbers and are obtained from solution of Schrodinger equation of hydrogen atom by application of boundary conditions. Below mentioned are four quantum numbers. 1. Principal Quantum Number It is represented by n . This quantum number is related to size and energy of different atomic orbitals. With increase in value of n , size of orbital becomes larger and electron is present farther from atomic nucleus for longer time. 2. Angular Momentum Quantum Number It is represented by l . It describes angular momentum of electron in any specific atomic orbital. Shape of orbitals is determined by this quantum number. It can have integral values from 0 to ( n − 1 ) . Designation of orbitals on basis of different l values is as follows: Value of l 0 1 2 3 Orbital s p d f 3. Magnetic Quantum Number This quantum number is denoted by m l . It describes orientation of angular momentum associated with atomic orbital. Its value ranges from − l to + l . Total values of magnetic quantum number is governed by 2 l + 1 4. Spin Quantum Number This quantum number is represented by m s . It indicates direction of electron spin. It can either + 1 2 or − 1 2 .
Solution Summary: The author explains quantum numbers for electrons in boron and nitrogen atom. They are obtained from Schrodinger equation of hydrogen by application of boundary conditions.
Definition Definition Product of the moment of inertia and angular velocity of the rotating body: (L) = Iω Angular momentum is a vector quantity, and it has both magnitude and direction. The magnitude of angular momentum is represented by the length of the vector, and the direction is the same as the direction of angular velocity.
Chapter 12, Problem 91E
Interpretation Introduction
Interpretation:Quantum numbers for all electrons in boron atom and nitrogen atom should be identified.
Concept introduction:Energy, size, shape, and orientation of atomic orbital are determined with help of some numbers. These numbers are called quantum numbers and are obtained from solution of Schrodinger equation of hydrogen atom by application of boundary conditions.
Below mentioned are four quantum numbers.
1. Principal Quantum Number
It is represented by n . This quantum number is related to size and energy of different atomic orbitals. With increase in value of n , size of orbital becomes larger and electron is present farther from atomic nucleus for longer time.
2. Angular Momentum Quantum Number
It is represented by l . It describes angular momentum of electron in any specific atomic orbital. Shape of orbitals is determined by this quantum number. It can have integral values from 0 to (n−1) .
Designation of orbitals on basis of different l values is as follows:
Value of l0123Orbitalspdf
3. Magnetic Quantum Number
This quantum number is denoted by ml . It describes orientation of angular momentum associated with atomic orbital. Its value ranges from −l to +l . Total values of magnetic quantum number is governed by 2l+1
4. Spin Quantum Number
This quantum number is represented by ms . It indicates direction of electron spin. It can either +12 or −12 .
5. A buffer consists of 0.45 M NH, and 0.25 M NH-CI (PK of NH 474) Calculate the pH of the butter. Ans: 9.52
BAS
PH-9.26 +10g (10.95))
14-4.59
PH=4.52
6. To 500 ml of the buffer on #5 a 0.20 g of sample of NaOH was added
a Write the net ionic equation for the reaction which occurs
b. Should the pH of the solution increase or decrease sightly?
Calculate the pH of the buffer after the addition Ans: 9.54
Explain the inductive effect (+I and -I) in benzene derivatives.
The inductive effect (+I and -I) in benzene derivatives, does it guide ortho, meta or para?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY