(a)
Interpretation:
Concept introduction:To remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy because they can attain the noble gas configuration upon loss of those electrons.
(a)
Explanation of Solution
With 2 electrons with
(b)
Interpretation:Electrons in
Concept introduction:To remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy because they can attain the noble gas configuration upon loss of those electrons.
(b)
Explanation of Solution
With 2 electrons with
(c)
Interpretation:Electrons in
Concept introduction:To remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy because they can attain the noble gas configuration upon loss of those electrons.
(c)
Explanation of Solution
With 2 electrons with
(d)
Interpretation:Electrons in
Concept introduction:To remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy because they can attain the noble gas configuration upon loss of those electrons.
(d)
Explanation of Solution
With 2 electrons with
(e)
Interpretation:Number of neutrons in this element should be identified.
Concept introduction:To remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy because they can attain the noble gas configuration upon loss of those electrons.
(e)
Explanation of Solution
With 2 electrons with
The formula to compute neutrons from mass number is as follows:
Atomic number is 24.
Mass number is 52.
Substitute the value in above formula.
So there are 28 neutrons in chromium.
(f)
Interpretation:Mass of
Concept introduction:To remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy because they can attain the noble gas configuration upon loss of those electrons.
(f)
Explanation of Solution
With 2 electrons with
Since molar mass of chromium ion is
Thus, mass of
(g)
Interpretation:Ground-state electron configuration of neutral chromium should be written.
Concept introduction:Aufbau rule states that electrons must be filled in lowest energy levels first. For instance, electrons first occupy shells that are lower in energies illustrated as follows:
Pauli’s exclusion principle states thatno two or more than two electrons of a poly electron atom can have same values of 4 quantum numbers that are
Hund’s rule of maximum multiplicity states that electrons cannot be allowed to pair until each orbital gets singly filled with one electron. These 3 principles form basis for determination of electronic configuration.However, certain elements that are able to achieve nearest half-filled or fully filed configuration show exceptional configurations.
(g)
Explanation of Solution
With 2 electrons with
With atomic number as 24, expected configuration for
Want to see more full solutions like this?
Chapter 12 Solutions
Chemical Principles
- Suppose that the spin quantum number could have the values 12,0 and 12 . Assuming that the rules governing the values of the other quantum numbers and the order of filling sublevels were unchanged, (a) what would be the electron capacity of an s sublevel? a p sublevel? a d sublevel? (b) how many electrons could fit in the n=3 level? (c) what would be the electron configuration of the element with atomic number 8? 17?arrow_forwardr Questions 11—13, you will need to consider ionizations beyond the first ionization energy. For example, the second ionization energy is the energy to remove a second electron from an element. Compare the first ionization energy of helium to its second ionization energy, remembering that both electrons come from the 1s orbital. l> X Y First 170 200 second 350 400 Third 1800 3500 fouth 2500 5000 entify the elements X and Y. There may be more than one answer. so explain completely.arrow_forwardExplain in your own words what is meant by (a) the Pauli exclusion principle. (b) Hund's rule. (c) a line in an atomic spectrum. (d) the principal quantum number.arrow_forward
- How does probability fit into the description of the atom?arrow_forwardAnswer the following questions, assuming that ms, could have three values rather than two and that the rules for n, l, and ml are the normal ones. a. How many electrons would an orbital be able to hold? b. How many elements would the first and second periods in the periodic table contain? c. How many elements would be contained in the first transition metal series? d. How many electrons would the set of 4f orbitals be able to bold?arrow_forwardWhich atom would be expected to have a half-filled 4s subshell?arrow_forward
- Make sense of the fact that metals tend to lose electrons and nonmetals tend to gain electrons.arrow_forwardHow are the Bohr model and the Rutherford model of the atom similar? How are they different?arrow_forwardList the orbitals in order of increasing orbital energy up to and including 3p orbitals.arrow_forward
- Which of the following statements is(are) true? a. The 2s orbital in the hydrogen atom is larger than the 3s orbital also in the hydrogen atom. b. The Bohr model of the hydrogen atom has been found to be incorrect. c. The hydrogen atom has quantized energy levels. d. An orbital is the same as a Bohr orbit. e. The third energy level has three sublevels, the s, p, and d sublevels.arrow_forwardWhat evidence do we have that energy levels in an atom are quantized? State and explain the evidence.arrow_forwardGive the symbol of the element of lowest atomic number whose ground state has (a) a completed f subshell. (b) twenty p electrons. (c) two 4d electrons. (d) five 5p electrons.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning