Chemical Principles
8th Edition
ISBN: 9781305581982
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 30E
Ionization energy is the energy required to remove anelectron from an atom in the gas phase. The ionizationenergy of gold is 890.1 kJ/mol. Is light with a wavelengthof 225 nm capable of ionizing a gold atom (removingan electron) in the gas phase?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Chemical Principles
Ch. 12 - Prob. 1DQCh. 12 - Prob. 2DQCh. 12 - Prob. 3DQCh. 12 - The first four ionization energies for elements X...Ch. 12 - Prob. 5DQCh. 12 - Prob. 6DQCh. 12 - Prob. 7DQCh. 12 - Prob. 8DQCh. 12 - Prob. 9DQCh. 12 - Prob. 10DQ
Ch. 12 - Prob. 11DQCh. 12 - Prob. 12DQCh. 12 - Prob. 13DQCh. 12 - Prob. 14DQCh. 12 - Prob. 15DQCh. 12 - Prob. 16DQCh. 12 - Prob. 17DQCh. 12 - Is the following statement true or false: The...Ch. 12 - Which is higher in energy: the 2s or 2p orbital in...Ch. 12 - Prove mathematically that it is more energetically...Ch. 12 - Microwave radiation has a wavelength on the order...Ch. 12 - Consider the following waves representing...Ch. 12 - Prob. 23ECh. 12 - Human color vision is “produced” by the nervous...Ch. 12 - One type of electromagnetic radiation has a...Ch. 12 - Carbon absorbs energy at a wavelength of 150. nm....Ch. 12 - Prob. 27ECh. 12 - X rays have wavelengths on the order of 110-10m...Ch. 12 - The work function of an element is the energy...Ch. 12 - Ionization energy is the energy required to remove...Ch. 12 - It takes 208.4 kJ of energy to remove 1 mole of...Ch. 12 - What experimental evidence supports the quantum...Ch. 12 - Explain the photoelectric effect.Ch. 12 - Calculate the de Broglie wavelength for each of...Ch. 12 - Neutron diffraction is used in determining the...Ch. 12 - Calculate the velocities of electrons with de...Ch. 12 - An atom of a particular element is traveling at 1%...Ch. 12 - Characterize the Bohr model of the atom. In the...Ch. 12 - Prob. 39ECh. 12 - Consider only the transitions involving the first...Ch. 12 - Calculate the longest and shortest wavelengths of...Ch. 12 - Prob. 42ECh. 12 - Assume that a hydrogen atom’s electron has been...Ch. 12 - What is the maximum wavelength of light capable...Ch. 12 - An electron is excited from the ground state to...Ch. 12 - Does a photon of visible light (=400700nm)...Ch. 12 - An excited hydrogen atom emits light with a...Ch. 12 - An excited hydrogen atom with an electron in the n...Ch. 12 - Consider an electron for a hydrogen atom in an...Ch. 12 - Prob. 50ECh. 12 - One of the emission spectral lines for Be3+ has a...Ch. 12 - The Heisenberg uncertainty principle can be...Ch. 12 - Using the Heisenberg uncertainty principle,...Ch. 12 - We can represent both probability and radial...Ch. 12 - Prob. 55ECh. 12 - Calculate the wavelength of the electromagnetic...Ch. 12 - An electron in a one-dimensional box requires a...Ch. 12 - An electron in a 10.0-nm one-dimensional box is...Ch. 12 - Prob. 59ECh. 12 - What is the total probability of finding a...Ch. 12 - Which has the lowest (ground-state) energy, an...Ch. 12 - What are quantum numbers? What information do...Ch. 12 - How do 2p orbitals differ from each other? How do...Ch. 12 - Identify each of the following orbitals, and...Ch. 12 - Which of the following orbital designations are...Ch. 12 - Prob. 66ECh. 12 - The following sets of quantum numbers are not...Ch. 12 - How many orbitals can have the designation 5p,...Ch. 12 - How many electrons in an atom can have the...Ch. 12 - Prob. 70ECh. 12 - Prob. 71ECh. 12 - From the diagrams of 2p and 3p orbitals in Fig....Ch. 12 - Prob. 73ECh. 12 - Prob. 74ECh. 12 - Total radial probability distributions for the...Ch. 12 - The relative orbital levels for the hydrogen atom...Ch. 12 - What is the difference between core electrons and...Ch. 12 - Prob. 78ECh. 12 - Prob. 79ECh. 12 - The elements of Si, Ga, As, Ge, Al, Cd, S, and Se...Ch. 12 - Write the expected electron configurations for the...Ch. 12 - Write the expected electron configurations for...Ch. 12 - Prob. 83ECh. 12 - Using Fig. 12.29, list elements (ignore the...Ch. 12 - Prob. 85ECh. 12 - Prob. 86ECh. 12 - Prob. 87ECh. 12 - Prob. 88ECh. 12 - Prob. 89ECh. 12 - Prob. 90ECh. 12 - Prob. 91ECh. 12 - Prob. 92ECh. 12 - Prob. 93ECh. 12 - Prob. 94ECh. 12 - Prob. 95ECh. 12 - A certain oxygen atom has the electron...Ch. 12 - Prob. 97ECh. 12 - Prob. 98ECh. 12 - Prob. 99ECh. 12 - Explain why the first ionization energy tends to...Ch. 12 - Prob. 101ECh. 12 - The radius trend and the ionization energy trend...Ch. 12 - Prob. 103ECh. 12 - Prob. 104ECh. 12 - In each of the following sets, which atom or ion...Ch. 12 - Prob. 106ECh. 12 - Prob. 107ECh. 12 - Prob. 108ECh. 12 - Prob. 109ECh. 12 - Prob. 110ECh. 12 - Prob. 111ECh. 12 - Consider the following ionization energies for...Ch. 12 - Prob. 113ECh. 12 - Prob. 114ECh. 12 - Prob. 115ECh. 12 - Prob. 116ECh. 12 - Prob. 117ECh. 12 - Prob. 118ECh. 12 - Prob. 119ECh. 12 - Prob. 120ECh. 12 - Prob. 121ECh. 12 - Prob. 122ECh. 12 - Prob. 123ECh. 12 - Prob. 124ECh. 12 - Prob. 125ECh. 12 - Prob. 126ECh. 12 - Prob. 127ECh. 12 - Prob. 128AECh. 12 - Prob. 129AECh. 12 - Prob. 130AECh. 12 - Prob. 131AECh. 12 - Prob. 132AECh. 12 - Prob. 133AECh. 12 - Prob. 134AECh. 12 - Prob. 135AECh. 12 - Prob. 136AECh. 12 - Prob. 137AECh. 12 - Prob. 138AECh. 12 - Prob. 139AECh. 12 - An unknown element is a nonmetal and has a...Ch. 12 - Prob. 141AECh. 12 - Using data from this chapter, calculate the change...Ch. 12 - Answer the following questions, assuming that ms...Ch. 12 - Prob. 144AECh. 12 - Prob. 145AECh. 12 - Prob. 146AECh. 12 - The figure below represents part of the emission...Ch. 12 - Prob. 148AECh. 12 - Prob. 149AECh. 12 - Prob. 150AECh. 12 - Prob. 151AECh. 12 - Prob. 152AECh. 12 - Prob. 153AECh. 12 - Identify the following three elements. a. The...Ch. 12 - Prob. 155AECh. 12 - Prob. 156AECh. 12 - Prob. 157AECh. 12 - Prob. 158CPCh. 12 - The ground state ionization energy for the one...Ch. 12 - When the excited electron in a hydrogen atom falls...Ch. 12 - Prob. 161CPCh. 12 - The following numbers are the ratios of second...Ch. 12 - Prob. 163CPCh. 12 - Prob. 164CPCh. 12 - Prob. 165CPCh. 12 - Prob. 166CPCh. 12 - The ionization energy for a 1s electron in a...Ch. 12 - Without looking at data in the text, sketch a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- It requires 799 kJ of energy to break one mole of carbon-oxygen double bonds in carbon dioxide. What wavelength of light does this correspond to per bond? Is there any transition in the hydrogen atom that has at least this quantity of energy to one photon?arrow_forwardUntil recently, it was thought that Ca was unstable, and that the Ca atom therefore had a negative electron affinity. Some new experiments have now measured an electron affinity of +2.0kJmol1 for calcium. What is the longest wavelength of light that could remove an electron from Ca ? In which region of the electromagnetic spectrum does this light fall?arrow_forwardThe outermost electron in an alkali-metal atom is sometimes described as resembling an electron in the corresponding state of a one-electron atom. Compare the first ionization energy of lithium with the binding energy of a 2s electron in a one-electron atom that has nuclear charge Zeff , and determine the value of Zeff that is necessary for the two energies to agree. Repeat the calculation for the 3s electron of sodium and the 4s electron of potassium.arrow_forward
- r Questions 11—13, you will need to consider ionizations beyond the first ionization energy. For example, the second ionization energy is the energy to remove a second electron from an element. Compare the first ionization energy of helium to its second ionization energy, remembering that both electrons come from the 1s orbital. l> X Y First 170 200 second 350 400 Third 1800 3500 fouth 2500 5000 entify the elements X and Y. There may be more than one answer. so explain completely.arrow_forwardHeated lithium atoms emit photons of light with an energy of 2.9611019 J. Calculate the frequency and wavelength of one of these photons. What is the total energy in 1 mole of these photons? What is the color of the emitted light?arrow_forward6.29 A mercury atom emits light at many wavelengths, two of which are at 435.8 and 546.1 nm. Both of these transitions are to the same final state. (a) What is the energy difference between the two states for each transition? (b) lf a transition between the two higher energy states could be observed, what would be the frequency of the light?arrow_forward
- Describe briefly why the study of electromagnetic radiation bas been important to our understanding of the arrangement of electrons in atomsarrow_forwardA metallic element reacts vigorously with water, evolving hydrogen gas. An excited atom of this element has its outer electron in the 3p orbital. When this electron drops to its ground state in the 3s orbital, light is emitted of wavelength 589 nm What is the identity of the element? Explain how you arrived at your answer. What is the color of the emitted light?arrow_forwardThe first ionization energy of helium is 2370kJmol1 , the highest for any element. (a) Define ionization energy and discuss why for helium it should be so high. (b) Which element would you expect to have the highest second ionization energy? Why? (c) Suppose that you wished to ionize some helium by shining electromagnetic radiation on it. What is the maximum wavelength you could use?arrow_forward
- 6.17 The laser in most supermarket barcode scanners operates at a wavelength of 632.8 nm. What is the energy of a single photon emitted by such a laser? What is the energy of one mole of these photons?arrow_forwardCesium was discovered in natural mineral waters in 1860 by R. W. Bunsen and G. R. Kirchhoff, using the spectroscope they invented in 1859. The name came from the Latin caesius ("sky blue") because of the prominent blue line observed for this element at 455.5 nm. Calculate the frequency and energy of a photon of this light.arrow_forwardWhat type of electron orbital (i.e., s, p, d, or f) is designated by an electron with quantum numbers (a) n=1,l=0,m l =0(b) n=3,l=2,m l =1? (c) n=4,l=3,m l =3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY
QUANTUM MECHANICAL MODEL/Atomic Structure-21E; Author: H to O Chemistry;https://www.youtube.com/watch?v=mYHNUy5hPQE;License: Standard YouTube License, CC-BY