
(a)
Interpretation:Equation corresponding to fourth ionization energy of selenium should be written.
Concept introduction:In order to remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
Magnitude of ionization energy is determined by how effectively valence electron is held by nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy as they can attain the noble gas configuration upon loss of those electrons.
(b)
Interpretation: Equation corresponding to
Concept introduction:In order to remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
Reverse of ionization process may result in gain of one or more electron as exhibited by group 16 and 17 so as to attain noble core configuration. These groups have 6 and seven valence electrons and hence favorably accept 2 and 1 electron respectively. This behavior is termed as electron affinity.
(c)
Interpretation: Equation corresponding to electron affinity process of
Concept introduction:In order to remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
Reverse of ionization process may result in gain of one or more electron as exhibited by group 16 and 17 so as to attain noble core configuration. These groups have 6 and seven valence electrons and hence favorably accept 2 and 1 electron respectively. This behavior is termed as electron affinity.
(d)
Interpretation: Equation corresponding to ionization energy of
Concept introduction:In order to remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
Magnitude of ionization energy is determined by how effectively valence electron is held by nucleus. If the outermost shell has, for instance, one or two electrons that require very minimum ionization energy as they can attain the noble gas configuration upon loss of those electrons.
(e)
Interpretation: Equation corresponding to work function of
Concept introduction: In order to remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
Work function refers to least amount of energy that must be supplied to knock off the first electron. If energy greater than work function is applied the equivalent energy appears as kinetic energy of liberated electron.

Want to see the full answer?
Check out a sample textbook solution
Chapter 12 Solutions
Chemical Principles
- An expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.arrow_forwardThe reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?arrow_forwardOne liter of chlorine gas at 1 atm and 298 K reacts completely with 1.00 L of nitrogen gas and 2.00 L of oxygen gas at the same temperature and pressure. A single gaseous product is formed, which fills a 2.00 L flask at 1.00 atm and 298 K. Use this information to determine the following characteristics of the product:(a) its empirical formula;(b) its molecular formula;(c) the most favorable Lewis formula based on formal charge arguments (the central atom is N);(d) the shape of the molecule.arrow_forward
- How does the square root mean square velocity of gas molecules vary with temperature? Illustrate this relationship by plotting the square root mean square velocity of N2 molecules as a function of temperature from T=100 K to T=300 K.arrow_forwardDraw product B, indicating what type of reaction occurs. F3C CF3 NH2 Me O .N. + B OMearrow_forwardBenzimidazole E. State its formula. sState the differences in the formula with other benzimidazoles.arrow_forward
- Draw product A, indicating what type of reaction occurs. F3C CN CF3 K2CO3, DMSO, H₂O2 Aarrow_forward19) Which metal is most commonly used in galvanization to protect steel structures from oxidation? Lead a. b. Tin C. Nickel d. Zinc 20) The following molecule is an example of a: R₁ R2- -N-R3 a. Secondary amine b. Secondary amide c. Tertiary amine d. Tertiary amidearrow_forwardpls helparrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





