(a)
Interpretation:In mercury number of electrons occupied by atomic orbitals with
Concept introduction:Atomic orbital is mathematical function that depicts wave behavior of electrons in atom. It is used to indicate probability to find electrons in particular region around atomic nucleus. Probability density to find electron in space around sphere located at particular distance from nucleus is determined by radial distribution function.
Energy, size, shape, and orientation of atomic orbital are determined with help of some numbers. These numbers are called quantum numbers and are obtained from solution of Schrodinger equation of hydrogen atom by application of boundary conditions.
Below mentioned are four quantum numbers.
1. Principal Quantum Number
It is represented by
2.
It is represented by
Designation of orbitals on basis of different
3. Magnetic Quantum Number
This quantum number is denoted by
4. Spin Quantum Number
This quantum number is represented by
(a)
Answer to Problem 88E
Number of electrons occupied by atomic orbitals with
Explanation of Solution
The element
Since the principle quantum number of mercury is 3 that is it is present in third energy level. Type of orbitals present in third level is
Total number of orbitals are expressed as
Hence, there are total 9 orbitals in third energy level and each orbital has minimum 2 electrons. Therefore, number of electrons in mercury is 18.
(b)
Interpretation:In mercury number of electrons occupied by
Concept introduction:Atomic orbital is mathematical function that depicts wave behavior of electrons in atom. It is used to indicate probability to find electrons in particular region around atomic nucleus. Probability density to find electron in space around sphere located at particular distance from nucleus is determined by radial distribution function.
Energy, size, shape, and orientation of atomic orbital are determined with help of some numbers. These numbers are called quantum numbers and are obtained from solution of Schrodinger equation of hydrogen atom by application of boundary conditions.
Below mentioned are four quantum numbers.
1. Principal Quantum Number
It is represented by
2. Angular Momentum Quantum Number
It is represented by
Designation of orbitals on basis of different
3. Magnetic Quantum Number
This quantum number is denoted by
4. Spin Quantum Number
This quantum number is represented by
(b)
Answer to Problem 88E
In mercury, number of electrons occupied by
Explanation of Solution
The element
Since in mercury there are three
(c)
Interpretation:In mercury number of electrons occupied by
Concept introduction:Atomic orbital is mathematical function that depicts wave behavior of electrons in atom. It is used to indicate probability to find electrons in particular region around atomic nucleus. Probability density to find electron in space around sphere located at particular distance from nucleus is determined by radial distribution function.
Energy, size, shape, and orientation of atomic orbital are determined with help of some numbers. These numbers are called quantum numbers and are obtained from solution of Schrodinger equation of hydrogen atom by application of boundary conditions.
Below mentioned are four quantum numbers.
1. Principal Quantum Number
It is represented by
2. Angular Momentum Quantum Number
It is represented by
Designation of orbitals on basis of different
3. Magnetic Quantum Number
This quantum number is denoted by
4. Spin Quantum Number
This quantum number is represented by
(c)
Answer to Problem 88E
In mercury number of electrons occupied by
Explanation of Solution
The element
Since in mercury there are four
(d)
Interpretation:In mercury number of electrons that have spin up
Concept introduction:Atomic orbital is mathematical function that depicts wave behavior of electrons in atom. It is used to indicate probability to find electrons in particular region around atomic nucleus. Probability density to find electron in space around sphere located at particular distance from nucleus is determined by radial distribution function.
Energy, size, shape, and orientation of atomic orbital are determined with help of some numbers. These numbers are called quantum numbers and are obtained from solution of Schrodinger equation of hydrogen atom by application of boundary conditions.
Below mentioned are four quantum numbers.
1. Principal Quantum Number
It is represented by
2. Angular Momentum Quantum Number
It is represented by
Designation of orbitals on basis of different
3. Magnetic Quantum Number
This quantum number is denoted by
4. Spin Quantum Number
This quantum number is represented by
(d)
Answer to Problem 88E
In mercury number of electrons that have spin up
Explanation of Solution
The element
Paired electrons have half spin up and half spin down. Since
Want to see more full solutions like this?
Chapter 12 Solutions
Chemical Principles
- Draw all formal charges on the structures below as is and draw 1 resonance structure that is more stable.arrow_forwardPart II. xiao isolated a compound TAD (Ca H 10 N₂) from tobacco and obtained its IR spectrum. Xiao proposed a chemical structure shown below: % Transmittance 4000 3500 3000 2500 2000 Wavenumber (cm-1) 1500 1000 (a) Explain why her proposed structure is inconsistent with the IR spectrum obtained (b) TAD exists as a tautomer of the structure xiao proposed. Draw the structure and explain why it is more compatible with the obtained spectrum. (C) what is the possible source for the fairly intense signal at 1621cm1arrow_forwardAE>AE₁ (Y/N) AE=AE₁ (Y/N) AEarrow_forwardTreatment of 2-phenylpropan-2-amine with methyl 2,4-dibromobutanoate in the presence of a nonnucleophilic base, R3N, involves two successive SN2 reactions and gives compound A. ? NH2 Br Br Propose a structural formula for compound A. You do not have to explicitly draw H atoms. You do not have to consider stereochemistry. In cases where there is more than one answer, just draw one. R3N C14H19NO2 + 2 R3NH*Br Aarrow_forwardCorrectly name this compound using the IUPAC naming system by sorting the components into the correct order. Br IN Ν Harrow_forwardHow is the radical intermediate for this structure formed? Can you please draw arrows from the first radical to the resonance form that would result in this product? I'm lost.arrow_forwardPart VI. (a) calculate the λ max of the compound using woodward - Fieser rules. (b) what types of electronic transitions are present in the compound? (c) what are the prominent peaks in the IR spectrum of the compound?arrow_forwardDon't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forward↑ 0 Quiz List - RCC430M_RU05 X Aktiv Learning App × Qdraw resonance structure ×Q draw resonance structure xb My Questions | bartleby ×+ https://app.aktiv.com Draw a resonance structure of pyrrole that has the same number of pi bonds as the original structure. Include all lone pairs in your structure. + N H a 5 19°F Cloudy Q Search Problem 12 of 15 Atoms, Bonds and Rings Charges and Lone Pairs myhp हजु Undo Reset Remove Done Submit Drag To Pan 2:15 PM 1/25/2025arrow_forwardDon't used hand raitingarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning