
(a)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons.In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(a)

Answer to Problem 87E
There are two valence electrons in
Explanation of Solution
The
Since last electrons are present in fourth shell, therefore, outermost shell configuration of
(b)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(b)

Answer to Problem 87E
There are six valence electrons in
Explanation of Solution
The atomic number of
Since last electrons are present in two shells, therefore, outermost shell configuration of
(c)
Interpretation:Number of valence electrons of element 117 and specific valence electrons should be determined.
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(c)

Answer to Problem 87E
There are seven valence electrons in element 117 and valence shell configuration is
Explanation of Solution
The name of element 117 istennessine and its electronic configuration is as follows:
Since last electrons are present in seventh shell, therefore, outermost shell configuration of element 117 is
(d)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(d)

Answer to Problem 87E
There are three valence electrons in
Explanation of Solution
The atomic number of
Since last electrons are present in fifth shell, therefore, outermost shell configuration of
(e)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(e)

Answer to Problem 87E
There are eight valence electrons in
Explanation of Solution
The atomic number of
Since last electrons are present in third shell, therefore, outermost shell configuration of
(f)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(f)

Answer to Problem 87E
There are five valence electrons in
Explanation of Solution
The atomic number of
Since last electrons are present in sixth shell, therefore, outermost shell configuration of
Want to see more full solutions like this?
Chapter 12 Solutions
Chemical Principles
- 1. Show the steps necessary to make 2-methyl-4-nonene using a Wittig reaction. Start with triphenylphosphine and an alkyl halide. After that you may use any other organic or inorganic reagents. 2. Write in the product of this reaction: CH3 CH₂ (C6H5)₂CuLi H₂O+arrow_forward3. Name this compound properly, including stereochemistry. H₂C H3C CH3 OH 4. Show the step(s) necessary to transform the compound on the left into the acid on the right. Bri CH2 5. Write in the product of this LiAlH4 Br H₂C OHarrow_forwardWhat are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forward
- What are the major products of the following enolate alkylation reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forwardA block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcusarrow_forwardPotential Energy (kJ) 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. AH = -950 kJ AH = 575 kJ (i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s) Ea = 1550 kJ (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2240 kJ Ea = 2350 kJ AH = -825 kJ 2600 2400 2200 2000 1800 1600 1400 1200 1000 a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ 800 600 400 200 0 -200- -400 -600- -800- Reaction Progressarrow_forward
- Can u help me figure out the reaction mechanisms for these, idk where to even startarrow_forwardHi, I need your help with the drawing, please. I have attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forwardHi, I need your help i dont know which one to draw please. I’ve attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward
- 5. Write the formation reaction of the following complex compounds from the following reactants: 6. AgNO₃ + K₂CrO₂ + NH₄OH → 7. HgNO₃ + excess KI → 8. Al(NO₃)₃ + excess NaOH →arrow_forwardIndicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. CO₂C2H5 + CH3-NH-NH,arrow_forwardDraw the major product of this reaction N-(cyclohex-1-en-1-yl)-1-(pyrrolidino) reacts with CH2=CHCHO, heat, H3O+arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




