
(a)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons.In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(a)

Answer to Problem 87E
There are two valence electrons in
Explanation of Solution
The
Since last electrons are present in fourth shell, therefore, outermost shell configuration of
(b)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(b)

Answer to Problem 87E
There are six valence electrons in
Explanation of Solution
The atomic number of
Since last electrons are present in two shells, therefore, outermost shell configuration of
(c)
Interpretation:Number of valence electrons of element 117 and specific valence electrons should be determined.
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(c)

Answer to Problem 87E
There are seven valence electrons in element 117 and valence shell configuration is
Explanation of Solution
The name of element 117 istennessine and its electronic configuration is as follows:
Since last electrons are present in seventh shell, therefore, outermost shell configuration of element 117 is
(d)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(d)

Answer to Problem 87E
There are three valence electrons in
Explanation of Solution
The atomic number of
Since last electrons are present in fifth shell, therefore, outermost shell configuration of
(e)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(e)

Answer to Problem 87E
There are eight valence electrons in
Explanation of Solution
The atomic number of
Since last electrons are present in third shell, therefore, outermost shell configuration of
(f)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(f)

Answer to Problem 87E
There are five valence electrons in
Explanation of Solution
The atomic number of
Since last electrons are present in sixth shell, therefore, outermost shell configuration of
Want to see more full solutions like this?
Chapter 12 Solutions
Chemical Principles
- Part 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) Temporary cross-linked polymer Using: 4% polyvinyl alcohol+ methyl red + 4% sodium boratearrow_forwardcan you please answer both these questions and draw the neccesaryarrow_forwardcan you please give the answer for both these pictures. thankyouarrow_forward
- Part 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) | Bakelite like polymer Using: Resorcinol + NaOH + Formalinarrow_forwardQuestion 19 0/2 pts 3 Details You have a mixture of sodium chloride (NaCl) and potassium chloride (KCl) dissolved in water and want to separate out the Cl- ions by precipitating them out using silver ions (Ag+). The chemical equation for the net ionic reaction of NaCl and KCl with silver nitrate, AgNO3, is shown below. Ag+(aq) + Cl(aq) → AgCl(s) The total mass of the NaCl/KCl mixture is 1.299 g. Adding 50.42 mL of 0.381 M solution precipitates out all of the Cl-. What are the masses of NaCl and KCl in the mixture? Atomic masses: g: Mass of NaCl g: Mass of KCL Ag = 107.868 g mol- 1 Cl = 35.453 g mol- 1 K = 39.098 g mol- N = 14.007 g mol−1 Na = 22.99 g mol−1 0 = 15.999 g mol 1 Question Help: ✓ Message instructor Submit Questionarrow_forwardPart 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) Polyester fiber Using a) pthalic anhydride + anhydrous sodium acetate + ethylene glycol B)pthalic anhydride + anhydrous sodium acetate + glycerolarrow_forward
- Identify the missing starting materials/ reagents/ products in the following reactions. Show the stereochemistry clearly in the structures, if any. If there is a major product, draw the structures of the major product with stereochemistry clearly indicated where applicable. Show only the diastereomers (you do not have to draw the pairs of enantiomers). If you believe that multiple products are formed in approximately equal amounts (hence neither is the major product), draw the structures of the products, and show the detailed mechanism of these reactions to justify the formation of the multiple products. If you believe no product is formed, explain why briefly. (6 mark for each, except f and g, which are 10 mark each)arrow_forward3. What starting material would you use to synthesize 3-hydroxypentanoic acid using a NaBH4 reduction?arrow_forward1. Give stereochemical (Fischer projection) formulas for all (but no extras) the stereoisomers that could theoretically form during the reduction of a. the carbonyl group of 2-methyl-3--pentanone b. both carbonyl groups of 2,4-pentanedione (careful!) 2. Predict the products of the reduction of O=CCH2CH2CH2C=O with a. LiAlH4 b. NaBH4 CH3 OHarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




