Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 12.67E
Interpretation Introduction
Interpretation:
The energies of the wavefunctions that are linear combinations of three terms whose energy and overlap integral have the given valuesis to be evaluated.
Concept introduction:
In
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. The ground-state wavefunction of a hydrogen atom is:
1
3
1/2
(ra)¹²
y =
e
-r/ao
where a is the Bohr radius (53 pm). Calculate the probability that the electron will be found somewhere
within a small sphere of radius 1.1 pm centred on the nucleus.
In the space below, write the wave function W, for a one-dimensional quantum harmonic oscillator
in terms of the combined constant a = 2mav/h and the position variable x.
The normalized wave function for a particle in a one-
dimensional box in which the potential energy is zero is
(x) = /2/L sin (nTx/L), where L is the length of the box
(with the left wall at x = 0). What is the probability that
the particle will lie between x = 0 and x =
ticle is in its n = 2 state?
L/4 if the par-
Chapter 12 Solutions
Physical Chemistry
Ch. 12 - In the Stern-Gerlach experiment, silver atoms were...Ch. 12 - Prob. 12.2ECh. 12 - Prob. 12.3ECh. 12 - Suppose s=12 for an electron. Into how many parts...Ch. 12 - Using and labels, write two possible...Ch. 12 - List all possible combinations of all four quantum...Ch. 12 - What are the degeneracies of the H atom...Ch. 12 - Prob. 12.8ECh. 12 - a Differentiate between the quantum numbers s and...Ch. 12 - Is the spin orbital 1s for the H atom still...
Ch. 12 - Draw a diagram analogous to Figure 11.15, but now...Ch. 12 - Are mathematical expressions for the following...Ch. 12 - Prob. 12.13ECh. 12 - Prob. 12.14ECh. 12 - a Assume that the electronic energy of Li was a...Ch. 12 - Spin orbitals are products of spatial and spin...Ch. 12 - If 1 and 2 are the individual wavefunctions for...Ch. 12 - Show that the correct behavior of a wavefunction...Ch. 12 - Prob. 12.19ECh. 12 - Why isnt the electron configuration of beryllium,...Ch. 12 - Prob. 12.21ECh. 12 - Write a Slater determinant for the lithide ion,...Ch. 12 - Why does the concept of antisymmetric...Ch. 12 - a Construct Slater determinant wavefunctions for...Ch. 12 - Prob. 12.25ECh. 12 - Prob. 12.26ECh. 12 - Prob. 12.27ECh. 12 - Suppose an electron had three possible values of...Ch. 12 - Using a periodic table or Table 12.1, find the...Ch. 12 - Write an acceptable electron configuration for...Ch. 12 - Prob. 12.31ECh. 12 - Prob. 12.32ECh. 12 - Prob. 12.33ECh. 12 - An anharmonic oscillator has the potential...Ch. 12 - Prob. 12.35ECh. 12 - In a particle-in-a-box having length a, the...Ch. 12 - Prob. 12.37ECh. 12 - Prob. 12.38ECh. 12 - Prob. 12.39ECh. 12 - The Stark effect is the change in energy of a...Ch. 12 - Prob. 12.41ECh. 12 - Prob. 12.42ECh. 12 - Prob. 12.43ECh. 12 - Show that a variation theory treatment of H using...Ch. 12 - Prob. 12.45ECh. 12 - Explain why assuming an effective nuclear charge,...Ch. 12 - Prob. 12.47ECh. 12 - Consider a real system. Assume that a real...Ch. 12 - Prob. 12.49ECh. 12 - Prob. 12.50ECh. 12 - Prob. 12.51ECh. 12 - Prob. 12.52ECh. 12 - State the Born-Oppenheimer approximation in words...Ch. 12 - Prob. 12.54ECh. 12 - Spectroscopy deals with differences in energy...Ch. 12 - Prob. 12.56ECh. 12 - What is the bond order for the lowest excited...Ch. 12 - The helium atom was defined as two electrons and a...Ch. 12 - Explain how we know that the first in equation...Ch. 12 - Prob. 12.60ECh. 12 - Prob. 12.61ECh. 12 - Use molecular orbital arguments to decide whether...Ch. 12 - Prob. 12.63ECh. 12 - Prob. 12.65ECh. 12 - Prob. 12.67ECh. 12 - Prob. 12.68E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Based on the trend shown in Figure 11.5, draw the probability distribution of a harmonic oscillator wavefunction that has a very high value of n. Explain how this is consistent with the correspondence principle.arrow_forwardState how many radial, angular, and total nodes are in each of the following hydrogen-like wavefunctions. a 2s b 3s c 3p d 4f e 6g f 7sarrow_forwardWhat are the values of E, L, and Lz for an F8+ atom whose electron has the following wavefunctions, listed as n,l,ml? a 1,0,0 b 3,2,2c 2,1,1d 9,6,3.arrow_forward
- Chapter 3 introduced the concept of a double bond between carbon atoms, represented by C=C , with a length near 1.34 Å. The motion of an electron in such a bond can be treated crudely as motion in a one-dimensional box. Calculate the energy of an electron in each of its three lowest allowed states if it is confined to move in a one-dimensional box of length 1.34 Å. Calculate the wavelength of light necessary to excite the electron from its ground state to the first excited state.arrow_forwardThe wave function of an electron in the lowest (that is, ground) state of the hydrogen atom is (r)=( 1 a 0 3 )1/2exp(r a 0 )ao=0.5291010m (a) What is the probability of finding the electron inside a sphere of volume 1.0pm2 , centered at the nucleus (1pm=1012m) ? (b) What is the probability of finding the electron in a volume of 1.0pm2 at a distance of 52.9 pm from the nucleus, in a fixed but arbitrary direction? (c) What is the probability of finding the electron in a spherical shell of 1.0 pm in thickness, at a distance of 52.9 pm from the nucleus?arrow_forwardThe Lyman series of spectral lines for the H atom, in the ultraviolet region, arises from transitions from higher levels to n = 1. Calculate the frequency and wavelength of the least energetic line in this series.arrow_forward
- How is the Bohr theory of the hydrogen atom inconsistent with the uncertainty principle? In fact, it was this inconsistency, along with the theorys limited application to non-hydrogen-like systems, that limited Bohrs theory.arrow_forwardIn a FranckHertz experiment on sodium atoms, the first excitation threshold occurs at 2.103 eV. Calculate the wavelength of emitted light expected just above this threshold. (Note: Sodium vapor lamps used in street lighting emit spectral lines with wavelengths 5891.8 and 5889.9 Å.)arrow_forwardEstimate the probability of finding an electron which is excited into the 2s orbital of the H atom, looking in a cubical box of volume 0.751036m3 centered at the nucleus. Then estimate the probability of finding the electron if you move the volume searched to a distance of 105.8 pm from the nucleus in the positive z direction. (Note that since these volumes are small, it does not matter whether the volume searched is cubical or spherical.)arrow_forward
- Lasers are now used for the total or partial removal of skin tattoos. A laser with a wavelenth of 755 nm is used to remove tattoos in green or blue inks. (a) How much energy (in kJ/mol) is given off by the laser? (b) Compare the energy obtained in (a) with that given off by an x-ray (=1109m).arrow_forwardUse the mathematical expression for the 2pz wave function of a one-electron atom (see Table 5.2) to show that the probability of finding an electron in that orbital anywhere in the x-y plane is 0. What are the nodal planes for a dxz orbital and for a dx2y2 orbital?arrow_forward(a) Use the radial wave function for the 3p orbital of a hydrogen atom (see Table 5.2) to calculate the value of r for which a node exists. (b) Find the values of r for which nodes exist for the 3s wave function of the hydrogen atom.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning