Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 12.16E
Spin orbitals are products of spatial and spin wavefunctions, but correct antisymmetric forms of wavefunctions for multielectron atoms are sums and differences of spatial wavefunctions. Explain why acceptable antisymmetric wavefunctions are sums and differences (that is, combinations) instead of products of spatial wavefunctions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How are the wave functions of the two electrons in a He atom constructed from the individual orbital and spin wave functions? Write down the antisymmetric wave function of the configuration in determinantal form that contains both orbital and spin components for Ms=1 in He.
Sketch the form of the wavefunctions for the harmonic oscillator with quantum numbers v = 1 and 2. Use a symmetry argument to explain why these two wavefunctions are orthogonal (do not evaluate any integrals).
Since spin can have 2 possible orientations, what does this mean for the degeneracy?
Chapter 12 Solutions
Physical Chemistry
Ch. 12 - In the Stern-Gerlach experiment, silver atoms were...Ch. 12 - Prob. 12.2ECh. 12 - Prob. 12.3ECh. 12 - Suppose s=12 for an electron. Into how many parts...Ch. 12 - Using and labels, write two possible...Ch. 12 - List all possible combinations of all four quantum...Ch. 12 - What are the degeneracies of the H atom...Ch. 12 - Prob. 12.8ECh. 12 - a Differentiate between the quantum numbers s and...Ch. 12 - Is the spin orbital 1s for the H atom still...
Ch. 12 - Draw a diagram analogous to Figure 11.15, but now...Ch. 12 - Are mathematical expressions for the following...Ch. 12 - Prob. 12.13ECh. 12 - Prob. 12.14ECh. 12 - a Assume that the electronic energy of Li was a...Ch. 12 - Spin orbitals are products of spatial and spin...Ch. 12 - If 1 and 2 are the individual wavefunctions for...Ch. 12 - Show that the correct behavior of a wavefunction...Ch. 12 - Prob. 12.19ECh. 12 - Why isnt the electron configuration of beryllium,...Ch. 12 - Prob. 12.21ECh. 12 - Write a Slater determinant for the lithide ion,...Ch. 12 - Why does the concept of antisymmetric...Ch. 12 - a Construct Slater determinant wavefunctions for...Ch. 12 - Prob. 12.25ECh. 12 - Prob. 12.26ECh. 12 - Prob. 12.27ECh. 12 - Suppose an electron had three possible values of...Ch. 12 - Using a periodic table or Table 12.1, find the...Ch. 12 - Write an acceptable electron configuration for...Ch. 12 - Prob. 12.31ECh. 12 - Prob. 12.32ECh. 12 - Prob. 12.33ECh. 12 - An anharmonic oscillator has the potential...Ch. 12 - Prob. 12.35ECh. 12 - In a particle-in-a-box having length a, the...Ch. 12 - Prob. 12.37ECh. 12 - Prob. 12.38ECh. 12 - Prob. 12.39ECh. 12 - The Stark effect is the change in energy of a...Ch. 12 - Prob. 12.41ECh. 12 - Prob. 12.42ECh. 12 - Prob. 12.43ECh. 12 - Show that a variation theory treatment of H using...Ch. 12 - Prob. 12.45ECh. 12 - Explain why assuming an effective nuclear charge,...Ch. 12 - Prob. 12.47ECh. 12 - Consider a real system. Assume that a real...Ch. 12 - Prob. 12.49ECh. 12 - Prob. 12.50ECh. 12 - Prob. 12.51ECh. 12 - Prob. 12.52ECh. 12 - State the Born-Oppenheimer approximation in words...Ch. 12 - Prob. 12.54ECh. 12 - Spectroscopy deals with differences in energy...Ch. 12 - Prob. 12.56ECh. 12 - What is the bond order for the lowest excited...Ch. 12 - The helium atom was defined as two electrons and a...Ch. 12 - Explain how we know that the first in equation...Ch. 12 - Prob. 12.60ECh. 12 - Prob. 12.61ECh. 12 - Use molecular orbital arguments to decide whether...Ch. 12 - Prob. 12.63ECh. 12 - Prob. 12.65ECh. 12 - Prob. 12.67ECh. 12 - Prob. 12.68E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What are the degeneracies of the H atom wavefunctions when spin is accounted for? Give a general formula.arrow_forwardIs the spin orbital 1s for the H atom still spherically symmetric? Explain your answer.arrow_forwardWhy does the wavefunction 4,4,0 not exist? Similarly, why does a 3f subshell not exist? See exercise 11.73 for notation definition.arrow_forward
- Why does the concept of antisymmetric wavefunctions not need to be considered for the hydrogen atom?arrow_forwardWhat are the energies and angular momenta of the first five energy levels of benzene in the 2-D rotational motion approximation? Use the mass of the electron and a radius of 1.51A to determine I.arrow_forwarda Construct Slater determinant wavefunctions for Be and B. Hint: Although you need only include one p orbital for B, you should recognize that up to six possible determinants can be constructed. b How many different Slater determinants can be constructed for C, assuming that the p electrons spread out among the available p orbitals and have the same spin? How many different Slater determinants are there for F?arrow_forward
- What is the physical explanation of the difference between a particle having the 3-D rotational wavefunction 3,2 and an identical particle having the wavefunction 3,2?arrow_forwardExplain why cyclopentadiene easily accepts an electron to become cyclopentadienyl anion C5H5, which is abbreviated Cp in organic or organometallic chemistry.arrow_forwardShow that the normalization constants for the general form of the wavefunction =sin(nx/a) are the same and do not depend on the quantum number n.arrow_forward
- Write a Slater determinant for the lithide ion, Li.arrow_forwardA particle on a ring has a wavefunction =eim, where =0to2 and m is a constant. a Normalize the wavefunction, where d is d. How does the normalization constant depend on the constant m? b What is the probability that the particle is in the ring indicated by the angular range =0to2/3? Does this answer make sense? How does the probability depend on constant m?arrow_forwardIf 1 and 2 are the individual wavefunctions for electron 1 and electron 2, identify each overall wavefunction as symmetric or antisymmetric with respect to exchange of the two electrons. i.e., 1 becomes 2 and vice versa. a=1+2 b=12 c=12+22 d=sin1+sin2 d=cos1cos2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY