Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 12.36E
In a particle-in-a-box having length
Calculate the average energy of a particle in terms of its mass
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a)
If  = 3x? and B = , then show that  and ß donot commute with respect to the
function f(x) = sin x.
Show, if the wave function, w) = A cos(kx) + iA sin(kx) is an Eigen-function of the
linear momentum operator, P and if so, what is the Eigen value. (Note: A and k are
constants).
(b)
(a) For a particle in the stationary state n of a one dimensional box of length a, find the probability that the particle is in the region 0xa/4.(b) Calculate this probability for n=1,2, and 3.
Imagine a particle free to move in the x direction. Which of the following wavefunctions would be acceptable for such a particle? In eachcase, give your reasons for accepting or rejecting each function. (i) Ψ(x)=x2; (ii) Ψ(x)=1/x; (iii) Ψ(x)=e-x^2.
Chapter 12 Solutions
Physical Chemistry
Ch. 12 - In the Stern-Gerlach experiment, silver atoms were...Ch. 12 - Prob. 12.2ECh. 12 - Prob. 12.3ECh. 12 - Suppose s=12 for an electron. Into how many parts...Ch. 12 - Using and labels, write two possible...Ch. 12 - List all possible combinations of all four quantum...Ch. 12 - What are the degeneracies of the H atom...Ch. 12 - Prob. 12.8ECh. 12 - a Differentiate between the quantum numbers s and...Ch. 12 - Is the spin orbital 1s for the H atom still...
Ch. 12 - Draw a diagram analogous to Figure 11.15, but now...Ch. 12 - Are mathematical expressions for the following...Ch. 12 - Prob. 12.13ECh. 12 - Prob. 12.14ECh. 12 - a Assume that the electronic energy of Li was a...Ch. 12 - Spin orbitals are products of spatial and spin...Ch. 12 - If 1 and 2 are the individual wavefunctions for...Ch. 12 - Show that the correct behavior of a wavefunction...Ch. 12 - Prob. 12.19ECh. 12 - Why isnt the electron configuration of beryllium,...Ch. 12 - Prob. 12.21ECh. 12 - Write a Slater determinant for the lithide ion,...Ch. 12 - Why does the concept of antisymmetric...Ch. 12 - a Construct Slater determinant wavefunctions for...Ch. 12 - Prob. 12.25ECh. 12 - Prob. 12.26ECh. 12 - Prob. 12.27ECh. 12 - Suppose an electron had three possible values of...Ch. 12 - Using a periodic table or Table 12.1, find the...Ch. 12 - Write an acceptable electron configuration for...Ch. 12 - Prob. 12.31ECh. 12 - Prob. 12.32ECh. 12 - Prob. 12.33ECh. 12 - An anharmonic oscillator has the potential...Ch. 12 - Prob. 12.35ECh. 12 - In a particle-in-a-box having length a, the...Ch. 12 - Prob. 12.37ECh. 12 - Prob. 12.38ECh. 12 - Prob. 12.39ECh. 12 - The Stark effect is the change in energy of a...Ch. 12 - Prob. 12.41ECh. 12 - Prob. 12.42ECh. 12 - Prob. 12.43ECh. 12 - Show that a variation theory treatment of H using...Ch. 12 - Prob. 12.45ECh. 12 - Explain why assuming an effective nuclear charge,...Ch. 12 - Prob. 12.47ECh. 12 - Consider a real system. Assume that a real...Ch. 12 - Prob. 12.49ECh. 12 - Prob. 12.50ECh. 12 - Prob. 12.51ECh. 12 - Prob. 12.52ECh. 12 - State the Born-Oppenheimer approximation in words...Ch. 12 - Prob. 12.54ECh. 12 - Spectroscopy deals with differences in energy...Ch. 12 - Prob. 12.56ECh. 12 - What is the bond order for the lowest excited...Ch. 12 - The helium atom was defined as two electrons and a...Ch. 12 - Explain how we know that the first in equation...Ch. 12 - Prob. 12.60ECh. 12 - Prob. 12.61ECh. 12 - Use molecular orbital arguments to decide whether...Ch. 12 - Prob. 12.63ECh. 12 - Prob. 12.65ECh. 12 - Prob. 12.67ECh. 12 - Prob. 12.68E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider a particle of mass m confined to a one-dimensional box of length L and in a state with normalized wavefunction ψn. (a) Without evaluating any integrals, explain why ⟨x⟩ = L/2. (b) Without evaluating any integrals, explain why ⟨px⟩ = 0. (c) Derive an expression for ⟨x2⟩ (the necessary integrals will be found in the Resource section). (d) For a particle in a box the energy is given by En = n2h2/8mL2 and, because the potential energy is zero, all of this energy is kinetic. Use this observation and, without evaluating any integrals, explain why <p2x> = n2h2/4L2.arrow_forward(a) For a particle in the stationary state n of a one dimensional box of length a, find the probability that the particle is in the region 0 x a/4. (b) Calculate this probability for n = 1, 2, and 3 Sketch and | |2 for the n = 4 and n = 5 states of a particle in a one-dimensional box.arrow_forward4. The variance of many measurements of observable A is given by o = (A²) – (A)². Derive the variance in the measurements of position of a particle in a box in state „(x).arrow_forward
- Consider the molecules: CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH2. Let’s assume that the 10 electrons that make up the double bonds can exist everywhere along the carbon chains. The electrons can then be considered as particles in a box; the ends of the molecule correspond to the boundaries of the box with a finite or zero potential energy inside. In this “molecular box”, 2 electrons can occupy an energy level. What are quantum states that the electrons from this molecule can occupy in the ground state? Note that the length of a C-C bond is about 1.54A and the length of a C=C bond is 1.34A to allow you to estimate the length of the “molecular box”arrow_forward(b) A system with chemical potential u = 12.5 meV contains identical particles each with integer spin and has a single quantum state at energy E, = 0 meV. The temperature of the system is fixed at 290 K. To three significant figures, what is the ratio Pg/P1, where P is the probability of finding a single particle in the state Eo, and P3 is the probability of finding 3 particles in this state? P3/P (Input your answer as a number.)arrow_forwardparticle is confined to a one-dimensional box of length L. Deduce the location of the posit ions with in the box at which the particle is most likely to be found when the quantum number of the particle is (a) n = 1. (b) n = 2. and(c) n = 3.arrow_forward
- Consider the three spherical harmonics (a) Y0,0, (b) Y2,–1, and (c) Y3,+3. (a) For each spherical harmonic, substitute the explicit form of the function taken from Table 7F.1 into the left-hand side of eqn 7F.8 (the Schrödinger equation for a particle on a sphere) and confirm that the function is a solution of the equation; give the corresponding eigenvalue (the energy) and show that it agrees with eqn 7F.10. (b) Likewise, show that each spherical harmonic is an eigenfunction of lˆz = (ℏ/i)(d/dϕ) and give the eigenvalue in each case.arrow_forwardFor the system described in Exercise E7C.8(a), evaluate the expectation value of the angular momentum represented by the operator(ħ/i)d/dϕ for the case ml = +1, and then for the general case of integer ml.arrow_forward4. Given these operators A=d/dx and B=x², can you measure the expectation values of the corresponding observables to infinite precision simultaneously?arrow_forward
- Imagine a particle free to move in the x direction. Which of the following wavefunctions would be acceptable for such a particle? In each case, give your reasons for accepting or rejecting each function. (1) Þ(x) = x²; (iv) y(x) = x 5. (ii) ¥(x) = ; (v) (x) = e-* ; (iii) µ(x) = e-x²; (vi) p(x) = sinxarrow_forwardA glow worm of mass 5.0 g emits red light (650nm) with a power of 0.10W entirely in the backward direction. To what speed will it have accelerated after 10y if released into free space and assumed to live? Energy emitted = P(W)-At(s). Assume the conservation of linear momentum, which means that the loss of a photon imparts an equivalent momentum in the opposite direction. total energy The total momentum imparted to the glow-worm: p = Npphoton where energy/photon x= 650nm N = Energy emitted p = mv Energyphoton V= = { PglowwormN Pphoton N = # of photons = Pphoton = momentum/photon 5g=00005kg = (mv) glowworm At =10yrs => At-see Total Energy = Pat energy/photon = (E=hr) = hec Pphoton = 12 숫arrow_forwardSuppose that 1.0 mol of perfect gas molecules all occupy the lowest energy level of a cubic box. (a) How much work must be done to change the volume of the box by ΔV? (b) Would the work be different if the molecules all occupied a state n ≠ 1? (c) What is the relevance of this discussion to the expression for the expansion work discussed in Topic 2A? (d) Can you identify a distinction between adiabatic and isothermal expansion?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Quantum Mechanics - Part 1: Crash Course Physics #43; Author: CrashCourse;https://www.youtube.com/watch?v=7kb1VT0J3DE;License: Standard YouTube License, CC-BY