Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 12.43E
Interpretation Introduction
Interpretation:
The given equation 12.30 is to be verified using equation 12.29.
Concept introduction:
Perturbation theory assumes that a system can be approximated as a known, solvable system. The difference between the known system and system of interest is small and additive. Thus, the Hamiltonian for the real system can be written as given below.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For the function:
R, a, b - are constant- Write an expression for the derivative of p in relation to v when the other quantities are constant- Write an expression for the derivative of p in relation to T when all other quantities are constant.
Since we will be dealing with partial derivatives later in the semester, this is a good opportunity to review this topic (see appendix C). Then evaluate the following partial derivatives
(a) PV = nRT; (∂ P/∂V)T
(b) r = (x2 + y2 + z 2 )1/2; (∂ r/∂y)x,z
Is the statement true of false? Support the answer
a. For a fixed amount of a perfect gas, U and H each depend only on T.
Chapter 12 Solutions
Physical Chemistry
Ch. 12 - In the Stern-Gerlach experiment, silver atoms were...Ch. 12 - Prob. 12.2ECh. 12 - Prob. 12.3ECh. 12 - Suppose s=12 for an electron. Into how many parts...Ch. 12 - Using and labels, write two possible...Ch. 12 - List all possible combinations of all four quantum...Ch. 12 - What are the degeneracies of the H atom...Ch. 12 - Prob. 12.8ECh. 12 - a Differentiate between the quantum numbers s and...Ch. 12 - Is the spin orbital 1s for the H atom still...
Ch. 12 - Draw a diagram analogous to Figure 11.15, but now...Ch. 12 - Are mathematical expressions for the following...Ch. 12 - Prob. 12.13ECh. 12 - Prob. 12.14ECh. 12 - a Assume that the electronic energy of Li was a...Ch. 12 - Spin orbitals are products of spatial and spin...Ch. 12 - If 1 and 2 are the individual wavefunctions for...Ch. 12 - Show that the correct behavior of a wavefunction...Ch. 12 - Prob. 12.19ECh. 12 - Why isnt the electron configuration of beryllium,...Ch. 12 - Prob. 12.21ECh. 12 - Write a Slater determinant for the lithide ion,...Ch. 12 - Why does the concept of antisymmetric...Ch. 12 - a Construct Slater determinant wavefunctions for...Ch. 12 - Prob. 12.25ECh. 12 - Prob. 12.26ECh. 12 - Prob. 12.27ECh. 12 - Suppose an electron had three possible values of...Ch. 12 - Using a periodic table or Table 12.1, find the...Ch. 12 - Write an acceptable electron configuration for...Ch. 12 - Prob. 12.31ECh. 12 - Prob. 12.32ECh. 12 - Prob. 12.33ECh. 12 - An anharmonic oscillator has the potential...Ch. 12 - Prob. 12.35ECh. 12 - In a particle-in-a-box having length a, the...Ch. 12 - Prob. 12.37ECh. 12 - Prob. 12.38ECh. 12 - Prob. 12.39ECh. 12 - The Stark effect is the change in energy of a...Ch. 12 - Prob. 12.41ECh. 12 - Prob. 12.42ECh. 12 - Prob. 12.43ECh. 12 - Show that a variation theory treatment of H using...Ch. 12 - Prob. 12.45ECh. 12 - Explain why assuming an effective nuclear charge,...Ch. 12 - Prob. 12.47ECh. 12 - Consider a real system. Assume that a real...Ch. 12 - Prob. 12.49ECh. 12 - Prob. 12.50ECh. 12 - Prob. 12.51ECh. 12 - Prob. 12.52ECh. 12 - State the Born-Oppenheimer approximation in words...Ch. 12 - Prob. 12.54ECh. 12 - Spectroscopy deals with differences in energy...Ch. 12 - Prob. 12.56ECh. 12 - What is the bond order for the lowest excited...Ch. 12 - The helium atom was defined as two electrons and a...Ch. 12 - Explain how we know that the first in equation...Ch. 12 - Prob. 12.60ECh. 12 - Prob. 12.61ECh. 12 - Use molecular orbital arguments to decide whether...Ch. 12 - Prob. 12.63ECh. 12 - Prob. 12.65ECh. 12 - Prob. 12.67ECh. 12 - Prob. 12.68E
Knowledge Booster
Similar questions
- Identify the systems for which it is essential to include a factor of 1/N! on going from Q to q : (i) a sample of carbon dioxide gas, (ii) a sample of graphite, (iii) a sample of diamond, (iv) ice.arrow_forwardDerive an expression for the mean energy of a collection of molecules that have three energy levels at 0, ε, and 3ε with degeneracies 1, 5, and 3, respectively.arrow_forwardOutline the principles behind the derivation of the Boltzmann distribution.arrow_forward
- 1. What is the theorem of "equipartition of energy" in classical statistical mechanics? Based on this theorem, derive the internal energies for monatomic, diatomic and triatomic (both linear and nonlinear) ideal gases.arrow_forwardDifferentiate between Fermi level and Fermion.arrow_forwardP3.37 Prove that Cy = -(V), (3), Uarrow_forward
- What is the value of n from Huckel’s rule for each of the following compounds?arrow_forwardWe discussed in class (several times) how the Boltzmann distribution can be used to relate the relative populations of two states differing in energy by AU. Suppose you are given a vial containing a solution of glucose in water (don't ask why this would happen). For the purpose of this question, glucose exists in one of two conformations-"chair" or "boat"-with an energy difference (AU) of 25.11 kJ mol1 between them. 1. What would be the proportion of molecules in the "boat" conformation at 310K? 2. Thinking back to our discussion of the individual sources of energy that go into the potential energy calculation for a molecule (e.g. Upond Uangle, Uelectrostatic. etc), give a plausible explanation of why the "boat" conformation is less stable. H он "Chair" OH "Вoat" но но но- HO. H. HO. HO H. HO. OHarrow_forwardChemistry 2. Prove that (C)₁ = C), for an ideal gas.arrow_forward
- Identify the systems for which it is essential to include a factor of 1/N! on going from Q to q : (i) a sample of helium gas, (ii) a sample of carbon monoxide gas, (iii) a solid sample of carbon monoxide, (iv) water vapour.arrow_forwardThe force constant for HF is 966 N m-1. Using the harmonic oscillator model, calculate the relative population of the first excited state and the ground state at 300 K.arrow_forwardanswer under1hrarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,