Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 12.37E
Interpretation Introduction
Interpretation:
The average energy of an electron in a ring having
Concept introduction:
Perturbation theory assumes that a system can be approximated as a known, solvable system. The difference between the known system and system of interest is small and additive. Thus, the Hamiltonian for the real system can be written as given below.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q5)
Which of the following transitions are electric-dipole allowed?
(i) 'Πε Π, (ii) ἦΣ → 'Σ, (iii) Σ+ Δ, (iv) Σ΄ «Σ, (v)Σ → Σ.
Calculate the value of ml for a proton constrained to rotate in a circle of radius 100 pm around a fixed point given that the rotational energy is equal to the classical average energy at 25 degrees C.
(Mass of a proton = 1.6726 x 10^-27 kg, classical average energy=1/2kBT, where kBT is Boltzman constant = 1.30 x 10^ -23 J K^-1, and T is the temperature.)
Calculate the minimum excitation energy (i.e. the difference in energy between the first excited state and the ground state) of a proton constrained to rotate in a circle of radius 100 pm around a fixed point.
Chapter 12 Solutions
Physical Chemistry
Ch. 12 - In the Stern-Gerlach experiment, silver atoms were...Ch. 12 - Prob. 12.2ECh. 12 - Prob. 12.3ECh. 12 - Suppose s=12 for an electron. Into how many parts...Ch. 12 - Using and labels, write two possible...Ch. 12 - List all possible combinations of all four quantum...Ch. 12 - What are the degeneracies of the H atom...Ch. 12 - Prob. 12.8ECh. 12 - a Differentiate between the quantum numbers s and...Ch. 12 - Is the spin orbital 1s for the H atom still...
Ch. 12 - Draw a diagram analogous to Figure 11.15, but now...Ch. 12 - Are mathematical expressions for the following...Ch. 12 - Prob. 12.13ECh. 12 - Prob. 12.14ECh. 12 - a Assume that the electronic energy of Li was a...Ch. 12 - Spin orbitals are products of spatial and spin...Ch. 12 - If 1 and 2 are the individual wavefunctions for...Ch. 12 - Show that the correct behavior of a wavefunction...Ch. 12 - Prob. 12.19ECh. 12 - Why isnt the electron configuration of beryllium,...Ch. 12 - Prob. 12.21ECh. 12 - Write a Slater determinant for the lithide ion,...Ch. 12 - Why does the concept of antisymmetric...Ch. 12 - a Construct Slater determinant wavefunctions for...Ch. 12 - Prob. 12.25ECh. 12 - Prob. 12.26ECh. 12 - Prob. 12.27ECh. 12 - Suppose an electron had three possible values of...Ch. 12 - Using a periodic table or Table 12.1, find the...Ch. 12 - Write an acceptable electron configuration for...Ch. 12 - Prob. 12.31ECh. 12 - Prob. 12.32ECh. 12 - Prob. 12.33ECh. 12 - An anharmonic oscillator has the potential...Ch. 12 - Prob. 12.35ECh. 12 - In a particle-in-a-box having length a, the...Ch. 12 - Prob. 12.37ECh. 12 - Prob. 12.38ECh. 12 - Prob. 12.39ECh. 12 - The Stark effect is the change in energy of a...Ch. 12 - Prob. 12.41ECh. 12 - Prob. 12.42ECh. 12 - Prob. 12.43ECh. 12 - Show that a variation theory treatment of H using...Ch. 12 - Prob. 12.45ECh. 12 - Explain why assuming an effective nuclear charge,...Ch. 12 - Prob. 12.47ECh. 12 - Consider a real system. Assume that a real...Ch. 12 - Prob. 12.49ECh. 12 - Prob. 12.50ECh. 12 - Prob. 12.51ECh. 12 - Prob. 12.52ECh. 12 - State the Born-Oppenheimer approximation in words...Ch. 12 - Prob. 12.54ECh. 12 - Spectroscopy deals with differences in energy...Ch. 12 - Prob. 12.56ECh. 12 - What is the bond order for the lowest excited...Ch. 12 - The helium atom was defined as two electrons and a...Ch. 12 - Explain how we know that the first in equation...Ch. 12 - Prob. 12.60ECh. 12 - Prob. 12.61ECh. 12 - Use molecular orbital arguments to decide whether...Ch. 12 - Prob. 12.63ECh. 12 - Prob. 12.65ECh. 12 - Prob. 12.67ECh. 12 - Prob. 12.68E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Where is the probability density a maximum for the hydrogen-atom ground state, for which the probability 2 2ZT density is |$1,|² = ( = (2+²) e- παλ O r = a/Z r = a/2Z O None of the given choices. r = ∞ r = 0 ?arrow_forwardA normalized wavefunction for a particle confined between 0 and L in the x direction is ψ = (2/L)1/2 sin(πx/L). Suppose that L = 10.0 nm. Calculate the probability that the particle is (a) between x = 4.95 nm and 5.05 nm, (b) between x = 1.95 nm and 2.05 nm, (c) between x = 9.90 nm and 10.00 nm, (d) between x = 5.00 nm and 10.00 nm.arrow_forwardFor a certain harmonic oscillator of effective mass 1.33 × 10−25 kg, the difference in adjacent energy levels is 4.82 zJ. Calculate the force constant of the oscillator.arrow_forward
- Butadiene can be roughly modeled as a linear “box” with L = 0.424 nm. There are four electrons, two of which can go in each particle in a box state (two electrons in nX= 1; two electrons in nX= 2). The lowest excitation involves promoting an electron from nX= 2 to nX= 3. What is the energy of that excitation?arrow_forwardThe moment of inertia of an SF6 molecule is 3.07 × 10−45 kg m2. What is the minimum energy needed to start it rotating?arrow_forwardThe lines of the rotational spectrum of HBr are 5.10 x 10^11 Hz apart in frequency. Find the internuclear distance in HBr. (Notes: Since the Br atom is about 80 times more massive than the proton, the reduced mass of an HBr molecule can be taken as just the 1H mass.)arrow_forward
- P7B.8 A normalized wavefunction for a particle confined between 0 and L in the x direction, and between 0 and L in the y direction (that is, to a square of side L) is y = (2/L) sin(Tx/ L) sin(Ty/L). The probability of finding the particle between x, and x, along x, and between y, and y, along y is P= "w°dxdy Calculate the probability that the particle is: (a) between x = 0 and x = L/2, y = O and y = L/2 (i.e. in the bottom left-hand quarter of the square); (b) between x = L/4 and x = 3L/4, y = L/4 and y = 3L/4 (i.e. a square of side L/2 centred on x = y = L/2).arrow_forwardNormalize this two-electron wavefunction a(1) а(2)| |Y(1,2)) : B(1) B(2)|arrow_forward8C.5 (a) use the data in 8C.4 (a) to calculate the energy needed excite a CH4 molecule from a state with l=1 to a state with l=2arrow_forward
- Assume that the states of the π electrons of a conjugated molecule can be approximated by the wavefunctions of a particle in a one-dimensional box, and that the magnitude of the dipole moment can be related to the displacement along this length by μ = −ex. Show that the transition probability for the transition n = 1 → n = 2 is non-zero, whereas that for n = 1 → n = 3 is zero. Hints: The following relation will be useful: sin x sin y = 1/2cos(x − y) − 1/2cos(x + y). Relevant integrals are given in the Resource section.arrow_forward8. Calculate the moment of inertia and the energy in the J = 1 rotational state for ¹H₂ in which the bond length of ¹H₂ is 74.6 pm. The atomic mass of ¹H is 1.0078 u.arrow_forward2. Calculate the amount of energy required to go from the ground state to the first excited state of an electron moving in a circular orbit with a radius of 100 pm. 3. The wavefunction of a particle on a ring can also be written in terms of sines and cosines as Y (4) = eimiø = cos(m¡4) + i sin(m¡4). How many nodes exist in the real part of the wavefunction for m=2 and m=4? At what values of p are they located?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning