Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 12.21E
Interpretation Introduction
Interpretation:
The correctly behaved wavefunction for the ground state
Concept introduction:
The wavefunctions can be represented in the form of Slater determinants. The terms in the wavefunction is equal to
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
For a particle in a one-dimensional box, show that the wavefunctions ψ1 and ψ3 are orthogonal.
Without evaluating any integrals, state the value of the expectation value of x for a particle in a box of length L for the case where the wavefunction has n = 2. Explain how you arrived at your answer.
Construct the wavefunction for an excited state of the He atom with configuration 1s12s1. Use Zeff = 2 for the 1s electron and Zeff = 1 for the 2s electron.
Chapter 12 Solutions
Physical Chemistry
Ch. 12 - In the Stern-Gerlach experiment, silver atoms were...Ch. 12 - Prob. 12.2ECh. 12 - Prob. 12.3ECh. 12 - Suppose s=12 for an electron. Into how many parts...Ch. 12 - Using and labels, write two possible...Ch. 12 - List all possible combinations of all four quantum...Ch. 12 - What are the degeneracies of the H atom...Ch. 12 - Prob. 12.8ECh. 12 - a Differentiate between the quantum numbers s and...Ch. 12 - Is the spin orbital 1s for the H atom still...
Ch. 12 - Draw a diagram analogous to Figure 11.15, but now...Ch. 12 - Are mathematical expressions for the following...Ch. 12 - Prob. 12.13ECh. 12 - Prob. 12.14ECh. 12 - a Assume that the electronic energy of Li was a...Ch. 12 - Spin orbitals are products of spatial and spin...Ch. 12 - If 1 and 2 are the individual wavefunctions for...Ch. 12 - Show that the correct behavior of a wavefunction...Ch. 12 - Prob. 12.19ECh. 12 - Why isnt the electron configuration of beryllium,...Ch. 12 - Prob. 12.21ECh. 12 - Write a Slater determinant for the lithide ion,...Ch. 12 - Why does the concept of antisymmetric...Ch. 12 - a Construct Slater determinant wavefunctions for...Ch. 12 - Prob. 12.25ECh. 12 - Prob. 12.26ECh. 12 - Prob. 12.27ECh. 12 - Suppose an electron had three possible values of...Ch. 12 - Using a periodic table or Table 12.1, find the...Ch. 12 - Write an acceptable electron configuration for...Ch. 12 - Prob. 12.31ECh. 12 - Prob. 12.32ECh. 12 - Prob. 12.33ECh. 12 - An anharmonic oscillator has the potential...Ch. 12 - Prob. 12.35ECh. 12 - In a particle-in-a-box having length a, the...Ch. 12 - Prob. 12.37ECh. 12 - Prob. 12.38ECh. 12 - Prob. 12.39ECh. 12 - The Stark effect is the change in energy of a...Ch. 12 - Prob. 12.41ECh. 12 - Prob. 12.42ECh. 12 - Prob. 12.43ECh. 12 - Show that a variation theory treatment of H using...Ch. 12 - Prob. 12.45ECh. 12 - Explain why assuming an effective nuclear charge,...Ch. 12 - Prob. 12.47ECh. 12 - Consider a real system. Assume that a real...Ch. 12 - Prob. 12.49ECh. 12 - Prob. 12.50ECh. 12 - Prob. 12.51ECh. 12 - Prob. 12.52ECh. 12 - State the Born-Oppenheimer approximation in words...Ch. 12 - Prob. 12.54ECh. 12 - Spectroscopy deals with differences in energy...Ch. 12 - Prob. 12.56ECh. 12 - What is the bond order for the lowest excited...Ch. 12 - The helium atom was defined as two electrons and a...Ch. 12 - Explain how we know that the first in equation...Ch. 12 - Prob. 12.60ECh. 12 - Prob. 12.61ECh. 12 - Use molecular orbital arguments to decide whether...Ch. 12 - Prob. 12.63ECh. 12 - Prob. 12.65ECh. 12 - Prob. 12.67ECh. 12 - Prob. 12.68E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Show that the normalization constants for the general form of the wavefunction =sin(nx/a) are the same and do not depend on the quantum number n.arrow_forwardWhy does the concept of antisymmetric wavefunctions not need to be considered for the hydrogen atom?arrow_forwardFor a particle in a state having the wavefunction =2asinxa in the range x=0toa, what is the probability that the particle exists in the following intervals? a x=0to0.02ab x=0.24ato0.26a c x=0.49ato0.51ad x=0.74ato0.76a e x=0.98ato1.00a Plot the probabilities versus x. What does your plot illustrate about the probability?arrow_forward
- What are the degeneracies of the H atom wavefunctions when spin is accounted for? Give a general formula.arrow_forwardIs the uncertainty principle consistent with our description of the wavefunctions of the 1D particle-in-a-box? Hint: Remember that position is not an eigenvalue operator for the particle-in-a-box wavefunctions.arrow_forwardBased on the trend shown in Figure 11.5, draw the probability distribution of a harmonic oscillator wavefunction that has a very high value of n. Explain how this is consistent with the correspondence principle.arrow_forward
- Verify that the following wavefunctions are indeed eigenfunctions of the Schrdinger equation, and determine their energy eigenvalues. a =eiKx where V=0 and K is a constant b =eiKx where V=k, k is some constant potential energy, and K is a constant c =2asinxa where V=0.arrow_forwardIn exercise 10.41a, the wavefunction is not normalized. Normalize the wavefunction and verify that it still satisfies the Schrdinger equation. The limits on x are 0 and 2. How does the expression for the energy eigenvalue differ?arrow_forwardThe uncertainty principle is related to the order of the two operators operating on a wavefunction. Evaluate the expressions x (pxsinx) and px( x sinx) and demonstrate that you get different results.arrow_forward
- A particle on a ring has a wavefunction =eim, where =0to2 and m is a constant. a Normalize the wavefunction, where d is d. How does the normalization constant depend on the constant m? b What is the probability that the particle is in the ring indicated by the angular range =0to2/3? Does this answer make sense? How does the probability depend on constant m?arrow_forwardWhy does the wavefunction 4,4,0 not exist? Similarly, why does a 3f subshell not exist? See exercise 11.73 for notation definition.arrow_forwardIs the spin orbital 1s for the H atom still spherically symmetric? Explain your answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning